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Abstract 

In recent years, there has been a controversial debate in the literature regarding the 
choice among many interpretations of quantum mechanics. Based on certain realist 
desiderata, this debate has been partly addressed in the context of the choice between 
two opposite views about the mathematical space in which the fundamental ontology 
of this theory lives. Indeed, some scholars advocate a worldview in which this ontology 
lives in the abstract high-dimensional space, whilst others advocate a three-dimensional 
worldview, according to which the ontology lives in the physical space of our everyday 
experience. In this contribution, I will critically evaluate the tenability of solving the 
resulting underdetermination between the three/high-dimensional worldviews in the 
context of one particular quantum theory: the Bohmian approach. In so doing, I will be 
following two strategies: firstly, I will undermine the assumption that a set of theoretical 
or metaphysical virtues blocks the underdetermination problem associated with the 
mathematical space in which the fundamental Bohmian ontology lives; and secondly, 
I will propose a structural Bohmian interpretation through the use of dynamical 
symmetries (symplectic Lie groups), according to which the three/high-dimensional space 
distinction is just apparent as both spaces are grounded by the same dynamical, group-
theoretic structure.

Key words: Metaphysics of Quantum Mechanics; Bohm’s Theory; Structural Realism; 
Underdetermination; Lie Group Theory.

Resumen 

En los últimos años se ha desarrollado un polémico debate respecto a la elección entre 
las muchas interpretaciones de la mecánica cuántica disponibles en la literatura. Con 
base en ciertos criterios realistas, este debate se ha abordado en el contexto de la elección 
entre dos visiones opuestas sobre el espacio matemático en el que vive la ontología 
fundamental de esta teoría. En efecto, varios académicos han defendido una visión 
en la que esta ontología vive en un espacio abstracto de alta dimensión, mientras que 
otros abogan por una visión tridimensional, según la cual la ontología vive en el espacio 
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físico de nuestra experiencia cotidiana. En esta contribución, evaluaré críticamente la 
posibilidad de resolver la subdeterminación resultante entre la visión tridimensional y la 
de alta dimensión en el contexto de una teoría cuántica particular: el enfoque Bohmiano. 
Al hacerlo, seguiré dos estrategias: en primer lugar, socavaré la suposición de que un 
conjunto de virtudes teóricas o metafísicas bloquea el problema de la subdeterminación 
asociado con el espacio matemático en el que vive la ontología bohmiana fundamental; y 
en segundo lugar, propondré una interpretación Bohmiana estructural mediante el uso 
de simetrías dinámicas (grupos de Lie simplécticos), según la cual la distinción entre el 
espacio tridimensional y el de alta dimensión es solo aparente, ya que ambos espacios 
dependen fundamentalmente de la misma estructura dinámica.

Palabras clave: Metafísica de la mecánica cuántica; Teoría Bohmiana; Realismo 
estructural; Subdeterminación; Teoría de grupos de Lie.

1. Introduction

According to many scholars, the Bohmian theory (BQM) is an 
empirically equivalent formulation of quantum mechanics (QM) capable to 
be interpreted realistically. The task of the realist in this context is basically 
of elaborating, clarifying and extending the objective correspondence that is 
hypothesised to hold between BQM and the aspects of the actual world that 
this theory approximately characterises —if the relevant sentences of BQM 
are to be held as approximately true and its theoretical terms as referring. 
Unfortunately, this task is not as straightforward as it may seem, because 
even if there is an underlying formulation that serves to present BQM in 
terms of a set of minimal principles and postulates, there are different and 
even incompatible interpretations of this formulation available, leading to 
a contrastive form of strong underdetermination.1 In particular, one may 
recognise two opposed ‘Bohmian schools’ (considering important variants 

1	  As insisted by Laudan (1990), underdetermination comes in a wide variety of 
strengths depending on the scope attributed to the confirming evidence ––apart from 
other features associated with the corresponding hypotheses. As regards contrastive 
underdetermination (arising from empirical equivalence), some scholars have claimed 
that it appears in a weak and strong version (Bonk, 2008). The weak version, on the 
one hand, is the most common situation in which two or more theories only share the 
same set of evidence at some given time, but not necessarily at some later time. In this 
case, underdetermined theories might stop sharing a common evidence due to certain 
changes occurring at the level of their hypotheses or at their empirical level, where new 
evidence might appear at a later time ––requiring the extension of their domains. The 
strong version, on the other hand, involves the claim that for every theory there is always 
at least one theory which is empirically equivalent and shares all possible sets of past, 
present and future evidence. It should be noted, though, that in this contribution, we 
shall talk about the strong version of contrastive underdetermination. 
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among them) amply discussed in the literature: the neo-Newtonian approach 
advocated by Bohm (1952a), Bohm and Hiley (1993), Holland (1993) and 
the guiding approach elaborated by Bell (1971), Dürr et al. (1992), Valentini 
(1992), Baublitz and Shimony (1996), Belousek (2003), Solé (2013), Suárez 
(2015), Hubert and Romano (2017). Under these circumstances, the 
resulting problem of choice among many Bohmian interpretations has 
been standardly addressed by appealing to value-laden desiderata, called 
theoretical or metaphysical virtues, aiming to be satisfied by a single or a 
set of these interpretations (e.g., explanatory virtues, ontological parsimony, 
etc.). However, instead of evaluating the tenability of the Bohmian ontology 
in terms of its compliance with these theoretical or metaphysical virtues 
(i.e., the standard way to address the underdetermination issue), an 
alternative debate has been centered in the context of the choice between 
different interpretations, each of which associates the fundamental 
ontology of this theory with a particular mathematical space where it 
lives ––provided this ontology is distinguished from its mathematical 
representation. More specifically, the contention to be overcome by this 
alternative debate is between the three-dimensional worldview, according to 
which the fundamental ontology of the theory lives in the three-dimensional 
space of our everyday experience (Monton, 2006; Allori, 2013; Esfeld, 2014); 
and the high-dimensional worldview, in which it lives in an abstract high-
dimensional space (Albert, 1996, 2013, 2015; Ney, 2015).2

Considering this observation, the purpose of this contribution is 
twofold: firstly, to challenge the premise that the problem of choice among 
the three/high-dimensional Bohmian worldviews can be solved by appealing 
to some theoretical or metaphysical virtues; and secondly, that this problem 
can be approximately dissolved by means of advocating a Bohmian structural 
realist framework. In so doing, I will proceed as follows: In Section 2, I 
shall start with a brief theoretical outline of BQM, followed by a description 
of the three/high-dimensional worldviews compatible with this theory. In 
Section 3, I shall argue that no proposed set of theoretical or metaphysical 
virtues, such as explanatory power, ontological parsimony, common sense 
and ontological continuity, can overcome the resulting underdetermination 
problem. After assessing the possible alternatives to solve or dissolve this 
problem, in Section 4 I shall suggest a structural realist interpretation 
through the use of symmetry considerations, according to which the three/
high-dimensional distinction is just apparent as both Bohmian views share 

2	  Based on Monton (2006) and Albert (2015), I am excluding the most radical and 
problematic case, mistakenly attributed to Bell (1981, p. 128), in which both spaces are 
real and fundamental, whilst I am including the case in which both are real but one is 
fundamental and the other is not.
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the same fundamental structure, identified by the symmetry group of 
BQM. Finally, Section 5 will be left for concluding remarks, followed by an 
additional section of Appendices. 

2. The Bohmian Formulation and Interpretation

Broadly speaking, BQM is a non-relativistic theory of QM that is 
not physically but empirically equivalent to standard QM. This alternative 
theory is deterministic and governs the behaviour of a quantum system 
which, according to the most popular view, is constituted by N objective 
spinless particles moving in the manifested three-dimensional space ℝ3 
along definite trajectories of the form {Qi(t)| i = 1, ⋯, N} —in a similar 
fashion to the motion of Newtonian particles.

The way each of these particles moves, however, significantly differs 
from Newtonian mechanics, in the sense that it depends both upon the 
instantaneous configuration of all the particles Q(t) at time t and on the 
wave function3 of the composite system Ψt(q,t), where q = (q1,⋯,q3N) are 
coordinates defined in a high-dimensional space  (known as configuration 
space).4 Also associated with a pilot-wave (presupposing that it guides the 
particles in some way), the wave function obeys the usual Schrödinger 
equation, whereas the motion of the particles is determined according to 
the guiding equation:

This law of motion is introduced into the theory in addition to the 
standard QM formulation, where the i-field Vi corresponds to the three-
dimensional velocity of each particle at a given time t, generally defined 
as the rate of change of position, and  (Q(t0),t0) is the initial condition.5 As 

3	  The wave function is a differentiable function Ψt ∶ ℝM→ℂ with Ψ ∈ L2(ℝM, ℂ) and 
domain in (q,t).  L2(ℝM, ℂ) is the set of square-integrable functions in M-dimensional 
configuration space with 1 complex components.

4	  This is a special coordinate ordering of a 3N-dimensional Euclidean space consisting 
of N three-ordered tuples of coordinates (Q1(t), Q2(t), Q3(t)), (Q4(t), Q5(t), Q6(t)),  ⋯, (QN-2(t), 
QN-1(t), QN(t)), corresponding to each subsystem in three-dimensional Euclidean space. 
It is called configuration space because we are introducing additional structure into the 
Euclidean 3N-dimensional space, in such a way that a single point of ℝ3N represents N 
points in physical space.

5	  NB, if our focus is not upon predictions but about the fundamental nature of the 
entities posited by BQM, then the universal function and the configuration of the particles 
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one can read from this equation, the instantaneous velocity Vi depends on 
Ψt(q,t) and Q(t), namely, it is determined by the dynamical evolution of the 
whole system.6

Notwithstanding that this popular formulation of BQM looks 
rather readable and simple, it does not exhaust all interpretative 
possibilities. Since we would like to be as general as possible as regards 
the interpretation of the theory, we cannot only consider this particular 
presentation of BQM, which suggests that the wave function lives in an 
abstract high-dimensional space and “guides” a family of particles living in 
the three-dimensional physical space. Although the particles are essential 
features of BQM and cannot be removed from the ontology of the theory 
regardless of where they live (either in the three-dimensional physical 
space or in a high-dimensional mathematical space), the wave function 
does not necessarily have to exist as a beable: it may determine a set of 
existing properties indirectly, but does not necessarily have to be regarded 
as part of the ontology of the theory —understood in the standard way as a 
‘substance’ or object with ‘essential’ or intrinsic properties. And, even if we 
believe that the wave function is a beable, there are no restrictions as regards 
being ontologically committed to this object as living in three-dimensional 
space, as demonstrated by the multi-field approach developed by Hubert 
and Romano (2017). This observation reflects the fact that ontological 
commitments with respect to any theory do not entail (and have sometimes 
been mistakenly associated with) the reification and fundamentality of 
the space in which the theory is mathematically defined. On the contrary, 
that the theory is mathematically defined in an X-dimensional space poses 
no necessary (in principle) restrictions when conceiving of its underlying 
ontology as living in a Y-dimensional space.7

Therefore, we can elaborate two general, incompatible interpretations 
arising from the BQM formalism: either the worldview according to which 

of the entire universe must be considered. As such, Q(t) describes the configuration of 
all the particles of the universe at time t and Ψt is the function at time t that guides the 
motion of all these particles taken together.

6	  This formulation should consider a series of rules establishing a correspondence 
between mathematical representations and the empirical consequences of the theory 
(i.e., the QM predictions). These rules are established by both the statistical postulate and 
a ‘measurement framework’, described in Bohm (1952b), Dürr et al. (1992) and Holland 
(1993).

7	  It should be noted, though, that a physical theory, as it was originally formulated, 
already contains an ontology; it is not just a mathematical model. If we recognise this fact, 
it turns out that the interpretation of such a theory becomes a philosophical, revisionary 
activity where its mathematical formulation is not necessarily associated with the space 
in which the ontology lives. 
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objects and properties live in a real and fundamental high-dimensional 
space (e.g., wave function realism); or the worldview in which objects and 
properties live in a real and fundamental three-dimensional space, namely, 
the space of our senses and everyday experience (e.g., the multi-field 
approach and the parsimonious approach, to be defined in the next section).

Having characterised these different interpretations of BQM, let 
us now address the metaphysical underdetermination that arises as a 
consequence of trying to advocate a realist commitment with respect to this 
particular theory —and therefore trying to elucidate a physical worldview 
compatible with it.

3. The Underdetermination Problem within the Bohmian Theory

There are certainly well-documented cases of underdetermination of 
theory by evidence where no empirical ground is available to choose one theory 
instead of another. As we know, this problem may cast doubts on the truth 
of scientific theories, and hence may be seen as a threat to scientific realism. 
In response to this problem, some scholars demand that we should engage 
in inter-theoretic comparisons of relative simplicity, explanatory power, and 
other non-empirical, theoretical virtues, which may provide rational criteria 
for theory choice. However, as emphasised by Quine (1975) and numerous 
contemporary scholars —such as Loewer (1996), De Regt and Dieks (2005), 
Cohen and Callender (2009), Barrett (2019)— the possibility of engaging in 
inter-theoretic comparisons based on these virtues may be undermined by at 
least two reasonable objections. On the one hand, the objection of immanent 
comparisons consists in the claim that these value-laden desiderata are 
not epistemic but pragmatic and context-dependent, in the sense that they 
are defined relative to a system of basic kinds and predicates —associated 
with the linguistic framework in terms of which the theory is framed— that 
generally differ from one theory to another. The objection of mutual conflict, 
on the other hand, consists in the claim that we cannot compare different 
theoretical frameworks with relative theoretical virtues because they tend to 
conflict in a way that there is always a trade-off between them.8

Apart from these problems, however, there have been attempts to 
make comparisons between different postulated or elaborated ontologies, 
interpretations of mathematical entities, and other metaphysical 

8	  One way to avoid this problem might come from providing a metric or score with 
which theoretical virtues might be weight against each other to arrive at the best balance. 
However, in order to reach such a balance, the metric balance itself would depend on how 
we define the theoretical virtues involved inheriting in turn the problem of immanence 
comparisons (Cohen & Callender, 2009).
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commitments in accordance with ‘deeper’ and more general virtues (i.e., 
metaphysical virtues) that are not necessarily tied to specific basic kinds 
and predicates associated with the linguistic framework in terms of which 
the corresponding theory is framed, such as parsimony, metaphysical 
explanation and common sense. These virtues have been advocated in 
response to the stronger case of underdetermination in which there is no 
scientific ground to decide between different metaphysical commitments 
compatible with a common body of empirical data and other constitutive 
aspects of a theory. Commonly known as metaphysical (as opposed 
to theoretic) underdetermination, this case occurs when there are no 
epistemically accessible features (i.e, both empirical and scientifically) that 
can distinguish one compatible interpretation from another (van Fraassen, 
1991, p. 491). Considering this stronger form of underdetermination, 
a similar pair of objections can be raised against comparing different 
metaphysical frameworks with relative virtues of this kind. In this case, 
the first objection would say that we cannot compare different metaphysical 
frameworks with relative metaphysical virtues because, although they are 
not necessarily tied to specific kinds or linguistic predicates, they share 
the pragmatic and context-dependent nature of theoretical virtues, the 
only difference being that metaphysical virtues are defined with respect to 
certain metaphysical commitments that change from one interpretation of 
a theory to another (Bricker, 2020). The second objection, therefore, would 
consist in the claim that different metaphysical frameworks with relative 
metaphysical virtues cannot be compared because a trade-off between 
them always exists (Bennett, 2009; Kriegel, 2013).

Let us provide some concrete examples based on BQM that support 
this pair of objections raised against comparing different interpretations in 
accordance with four metaphysical virtues: common sense, metaphysical 
explanation, ontological parsimony and ontological continuity.

3.1. Underdetermination: common sense

In the high-dimensional worldview, the set of N three-dimensional 
particles are not real or are non-fundamental objects at best9; they are 

9	  According to the high-dimensional interpretation, there are two exclusive views 
regarding the metaphysical status of the particles: one may either interpret them as non-
existing ‘shadows’ or ‘illusions’ that arise from an abstract high-dimensional real world 
or confer upon them an ontological status but of a non-fundamental category compared 
to that of the fundamental high-dimensional ontology. Perhaps, Valentini (1992) can be 
read in terms of the first approach, whilst Bohm (1952a,b), Bohm and Hiley (1993) can 
be read in terms of the second one.
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interpreted as N ‘shadows’ or ‘reductive’ manifestations of a real and 
fundamental world particle moving along a curve in a 3N-dimensional 
Euclidean space. Considering that a prerequisite for any Bohmian realist 
is that at least a single particle must exist without this implying that any 
set of particles must live in the three-dimensional physical space, one 
may depart from the manifest image of the physical realm and imagine a 
completely unfamiliar world in which there exists a single world particle 
(as opposed to N particles) whose trajectory is determined by a real field 
spread throughout a 3N-dimensional Euclidean space (Albert, 1996, 2013, 
2015; Ney, 2015). As such, the wave function represents a 3N-dimensional 
classical field by virtue of the facts that energy and momentum conservation 
is ensured; and the field represents fundamental intrinsic properties of the 
world particle: it is an assignment of intrinsic properties to each point in 
a fundamental 3N-dimensional Euclidean space such that the values of 
these properties at each point in this space is the amplitude of the field at 
that point (Loewer, 1996).

As a consequence of this characterisation, some scholars —such 
as Allori (2013), Hubert and Romano (2017)— have argued that this 
high-dimensional worldview represents a significant departure from our 
familiar way of interpreting things (what is called common sense in the 
literature), normally associated with the manifest image of the physical, 
three-dimensional realm. Since the wave function and the world particle 
are assumed to be living in an unfamiliar high-dimensional space, the 
ontology posited by this interpretation is not only very abstract, but also 
is vague with respect to our familiar way of interpreting the referring 
terms of BQM, such as in the case of the multi-field and/or only the three-
dimensional particles.

However, the previous argument has been attacked by some scholars 
who think that the virtue of common sense is also compatible with a high-
dimensional interpretation. Following the analysis of Ney (2015), one can 
also advance the claim that this high-dimensional interpretation defines 
a local ontology because there is only one world particle whose motion 
is completely determined by the local assigning values of the field; and 
furthermore, it also defines a separable ontology because it involves 
an ontology of objects located (or properties instantiated) at distinct 
regions of a 3N-dimensional Euclidean space in addition to the fact that 
all categorical features are determined by features of both the field and 
the world particle instantiated at a point of an individual region in this 
space. Thus, our familiar concepts of locality and separability, which are 
foundational aspects of the classical world (excluding gravity, of course), 
can only be satisfied in a high-dimensional interpretation. And if these 
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classical concepts (as opposed to the manifest image of the physical realm) 
constitute what we associate with common sense but are not compatible 
with the three-dimensional ontology, then the three-dimensional worldview 
can also be conceived as departing from common sense.10

It follows from the previous argument that common sense is 
compatible with one of the three/high-dimensional Bohmian views 
depending on the sense we give to this metaphysical virtue, either in terms 
of the dimensionality of the space in which the ontology lives, or in terms 
of locality and separability. This leads us to argue for the right sense in 
which common sense must be interpreted, but assuming that the notions 
of locality and separability are independent from the dimensionality of the 
space, a question of metaphysical choice between different interpretations 
turns out to be a question of semantic and pragmatic definition with 
respect to what is supposed to be common sense to begin with. Therefore, 
as far as Bohmian interpretations are characterised in terms of the three/
high-dimensional space distinction, common sense does not seem to be a 
reasonable criterion for interpretative choice.

3.2. Underdetermination: explanatory power and ontological parsimony

In the three-dimensional worldview, there are N particles with 
definite positions and intrinsic properties, such as mass, charge, and so 
on (i.e., the references of the wave function-independent parameters), 
whose motion is represented by curves in a real and fundamental three-
dimensional Euclidean space, namely, the space of our senses and everyday 
experience. The dynamics of these particles is specified by the wave 
function, which evolves according to the Schrödinger equation. However, 
the fact that these N particles exist does not necessarily imply that the wave 
function also exists as a beable and represents a physical entity. Initially 
developed by Dürr et al. (1992, 1995) and Goldstein and Zanghì (2013), the 
parsimonious approach interprets the wave function not as an object or 
property; it is rather a mathematical, nomological entity that determines, 

10	 One might say that Ney’s high-dimensional locality is not what we commonly have 
in mind when speaking about locality. However, if we differentiate Ney’s high-dimensional 
locality from its three-dimensional counterpart, it is precisely the assumption that the 
ontology lives in a three-dimensional space (as opposed to its local nature) which is doing 
the job of choosing the correct interpretation on the basis of common sense. Thus, our 
claim here has to do with interpreting locality as a self-standing criterion associated 
with common sense, independent of the space in which this notion is defined. Once we 
associate this notion with such a space, the criterion used for interpretative choice does 
not correspond to the notion of locality anymore. Thanks to an anonymous reviewer for 
encouraging me to explain this point. 
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describes or prescribes (depending on our preferred view of laws of Nature) 
the dynamics of the particles living in the three-dimensional physical space. 
Moreover, according to this interpretation, we say that BQM is explicitly 
non-local by virtue of the fact that the dynamical properties of any particle, 
its velocity in particular (i.e., the reference of the field defined above), not 
only depend on its position, but also on the positions of the rest of the 
particles and the wave function. This non-local behavior of the particles, 
together with the nomological status of the wave function, implies that the 
only real properties that are intrinsic to the constitution of the particles 
are not their dynamical properties (e.g., energy, momentum, etc.), but their 
positions extended along trajectories —and the wave function-independent 
parameters such as mass, charge, and so on.

As a consequence of this characterisation, some advocates of the 
parsimonious approach, such as Goldstein and Zanghì (2013), have argued 
that the three-dimensional worldview represents the most parsimonious 
alternative compared to any other interpretation. Moreover, they have 
also argued that the mere fact that this approach interprets the wave 
function as nomological implies that the non-classical effects acquired by 
the particles cannot be explained in terms of any causal interaction with 
other objects. In other words, since the motion of the particles cannot be 
explained by any existing causal-mechanical agent, non-locality remains 
an unexplained feature of the theory —relative to the causal-mechanical 
account of explanation.11 Therefore, we end up with a trade-off between 
parsimony and explanatory power.

However, although these arguments have been the dominant, 
prevailing view with respect to BQM, one may also argue that the three-
dimensional Bohmian world is compatible with the alternative view, 
proposed by Hubert and Romano (2017), that the wave function represents 
a non-local and non-separable multi-field living in the three-dimensional 
space.12 The nature of this multi-field can be defined in terms of the facts 
that energy and momentum conservation are ensured; and instead of being 

11	 As corroborated by the problem of immanent comparisons, this conclusion depends 
on the causal-mechanical account of explanation and does not necessarily follow from 
taking an alternative account compatible with this parsimonious view. It is precisely this 
point that enables to argue that explanation is a pragmatic, immanent and contextual 
metaphysical virtue. In particular, it is immanent and contextual in the sense that it is 
defined relative to a causal-mechanical account. It is partly because of this immanent and 
contextual nature, that this and other metaphysical virtues cannot be used as criteria for 
interpretative choice, as it is concluded in this manuscript.

12	 This idea has not only been suggested in Hubert and Romano (2017), but also 
in Norsen et al. (2015). However, I consider the former to be the most comprehensive 
interpretation to date among this kind.
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an assignment of a definite value of intrinsic properties to each point of 
three-dimensional space (as in the case of a classical field), it is rather 
a more general assignment of a precise value of properties (not intrinsic 
in general) for an entire N-tuple of points of three-dimensional space. 
Moreover, the dynamical non-local correlations are causally explained in 
terms of an exchange of energy between the Bohmian particles. Such a 
mechanical process is ensured by the fact that the value of the multi-field 
is instantaneously specified for N-tuple of points in three-dimensional 
space. In this sense, the non-local character of the theory is characterised 
in terms of the nature of this holistic or relational multi-field, rather than 
in terms of the ‘obscure’ notion of action at a distance taking place between 
the particles. This, of course, makes the theory explanatory superior to 
the last alternative —relative, again, to the causal-mechanical account of 
explanation. However, the price to be paid is that this interpretation turns 
out to be ontologically robust in the sense that it introduces the multi-field 
as part of its ontology. In this respect, apart from the trade-off between 
explanatory power and ontological parsimony in this context, the three-
dimensional worldview does not commit us to one of these metaphysical 
virtues, it is rather compatible with both.

Analogously, Goldstein and Zanghì (2013) have critically argued that 
the high-dimensional worldview is the most ontologically robust alternative 
compared to any other interpretation due to the fact that the ontology of BQM 
is given in terms of a world particle and a field living in a high-dimensional 
space. In this case, the non-classical effects acquired by the particles in 
three-dimensional space are just ‘illusive’ or ‘reductive’ manifestations of a 
local and separable ontology living in a high-dimensional space. So, there 
are no non-local effects to be explained after all. However, the tenability of 
this dominant view can be as well challenged. We can advance the claim 
that the high-dimensional worldview is also compatible with the view that 
the wave function is not a real object but is interpreted as a law of Nature. 
Thus, it is an interpretation more parsimonious than wave function realism 
in the sense that it does not introduce any field as part of its ontology. 
However, the price to be paid for those who prefer ‘desert landscapes’ is that 
this interpretation turns out to be less explanatory to its high-dimensional 
alternative not because the wave function cannot causally explain the non-
local behavior of the hypothetical particles in three-dimensional space, but 
because it cannot causally explain the motion of the actual world particle, 
whatever the motion of this entity might be.13 Therefore, we end up with 

13	 One possible virtue associated with this interpretation is the fact that, for a many-
body system of N particles, the world particle describes trajectories that never cross, 
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a similar conclusion: apart from the trade-off between explanatory power 
and ontological parsimony, the high-dimensional Bohmian world does not 
commit us to one of these metaphysical virtues, it is rather compatible with 
both.

Under these circumstances, since both worldviews do not have a 
preference towards one of the above virtues, apart from the fact that these 
virtues are always trading-off between them, there is no way to choose one 
of these interpretations based on them. It follows that these virtues cannot 
be the most reasonable criteria for interpretative choice.

3.3. Underdetermination: ontological continuity

Let us finally investigate another criterion that might be conceived 
as a metaphysical virtue for interpretative choice between the three and the 
high-dimensional worldviews without falling into the last two objections. 
This criterion, called ontological continuity, relies on the assumption that 
the preservation of all and only the theoretical referring terms of successful 
physical theories that are indispensable for obtaining the predictions of the 
relevant phenomena (normally called ‘working posits’) is a reliable guide to 
approximate truth. We can take this criterion to mean that, other things 
equal, if one interpretation of a successor theory approximately preserves 
the working posits of a predecessor theory, then we ought to favour that 
interpretation of the successor theory (in the sense that it is reasonable to 
believe that it is approximately true). 

Note that this way of defining ontological continuity is immune to the 
problem of immanent comparisons by virtue of the fact that the definition 
itself is not contextual and can be applied to any set of successive theories, 
irrespective of the kind of ontology and the metaphysical commitments 
underlying these theories. In the same way, it is less (although still) 
probable that there is a trade-off with other metaphysical virtues because it 
is not associated with only a single theory but with two or more successive 
theories, something which broadens the scope of compatible interpretations 
that are virtuous in many other ways.

For some scholars, such as Allori (2017), Esfeld and Deckert (2017), 
the three-dimensional worldview is the only metaphysical framework 
capable of satisfying the previous metaphysical virtue as regards the 
classical-quantum transition. They argue that a Bohmian extension to 
the classical domain can only be articulated by interpreting the Bohmian 

whilst three-dimensional particles may in principle cross. This might avoid certain 
interpretative problems associated with BQM.
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particles and their positions (as opposed to the wave function and its phase) 
as preserved working posits by virtue of the fact that such an ontology is 
indispensable for obtaining the empirical predictions of both domains, and 
is, to some extent, preserved during this theory shift (ignoring the details 
about their actual nature). However, as I have recently argued in Manero 
(2024), the previous argument is objectionable because the classical 
analogs of the wave function and its phase can also be interpreted as 
preserved working posits, provided a notion of indispensability is expanded 
to incorporate successful explanations (in addition to predictions) of the 
relevant phenomena.14 According to Manero (2024), the phase of the wave 
function is an approximately preserved working posit that can also be 
interpreted as a high-dimensional field —following an interesting analogy 
with optical phenomena via the Hamilton-Jacobi formulation. Thus, all 
things being equal, both the three-dimensional particles ontology and the 
high-dimensional wave function phase may be regarded as approximately 
preserved working posits which form the basis of an equally reliable 
endorsement to the above metaphysical virtue in a sufficiently virtuous 
way. Therefore, if the author’s continuity argument is right, there are fairly 
reasons to conclude that the metaphysical underdetermination between a 
three and a high-dimensional worldview cannot be broken in general via 
ontological continuity.

4. Dissolving the Underdetermination Problem

As far as the three/high-dimensional distinction is considered, we 
end up with the presence of a strong metaphysical underdetermination 
by theory that cannot be broken by appealing to well-known metaphysical 
virtues, such as common sense, explanatory power, not less to say, 
ontological parsimony and ontological continuity. This implies that no 
matter if the best arguments are brought out to endorse one of the horns 
of the alleged underdetermination, the conclusion is that these virtues are 
not sufficient to decide which Bohmian view is the correct one. At the end 
of the day, this conclusion reinforces some well-known arguments that 

14	 Considering this broader indispensability criterion, the classical analogs of the 
wave function and its phase can also be interpreted as preserved working posits. This is 
because, although the phase is not indispensable for deriving the predictions of classical 
mechanics, it is indispensable for explaining the phenomena under the lens of the 
Hamilton-Jacobi framework in the broader context of classical and quantum mechanics. 
Indeed, without positing the phase as part of the ontology of both theories, we could not 
explain the motion of the corresponding world particles through a clear story of how the 
physical world actually is according to these theories. 
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reveal the limitations of theoretical and metaphysical virtues as criteria for 
interpretative choice: that non-empirical virtues, such as common sense, 
explanatory power, ontological parsimony and ontological continuity, are 
not capable of providing a uniquely determined and fully objective choice 
for all contexts (Acuña & Dieks, 2014).

In view of the previous discussion, we end up with two options on 
the table. On the one hand, one might reasonably embrace the problem and 
accept the underdetermination at the expense of advocating a pragmatist 
stance that basically would undermine the (metaphysical) realist basis that 
makes the alleged underdetermination an actual problem. On the other 
hand, one might revise and undermine some of our deeply rooted standard 
metaphysical presuppositions (apart from the metaphysical commitments 
and value-laden assumptions already considered) that, to a certain extent, 
are responsible for originating the underdetermination problem. More 
specifically, the latter option dissolves this problem because it reveals 
that the metaphysical underdetermination, as it is originally formulated 
in the context of BQM, is only compatible with the standard metaphysics 
of individual objects, namely, the view that objects are the fundamental 
bearers of a bundle of instantiated intrinsic properties that individuate 
them. Let us analyse both options in more detail.

4.1. Endorsing object-oriented metaphysics

As we know from influential literature, accepting the under-
determination problem leads to a fatal flaw against metaphysical realism: 
the thesis that, apart from the existence and independence assumptions 
associated with any kind of realism, endorse the epistemological claim that 
there is a one-to-one truth-correspondence between our representations 
(e.g., our preferred Bohmian interpretation) and the external world. 
Making an explicit departure from this way of understanding realism, 
one might reasonably suggest a realist stance along classic-pragmatist 
lines that does not collapse into a skeptic or constructive empiricist stance 
towards metaphysical underdetermination, nor does it departs from a 
naturalistic conception of metaphysics informed by current science to reach 
the speculative arena of the old rationalist systems of thought.

According to Howard (2011), one might plausibly argue that the 
most appropriate epistemic stance with respect to scientific theories or 
their interpretations is neither belief nor mere acceptance but a kind 
of Peircean ‘pursuitworthiness’. This stance would allow one to accept 
the resulting underdetermination at the current stage of knowledge by 
collecting an inventory of possible Bohmian interpretations that exhibit 
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some theoretical and metaphysical virtues, irrespective of whether or not 
they are objectively true. As French (2014, p. 42) comments on Howard, this 
inventory might enrich (partially and progressively) our understanding of 
the world, in a way that it involves (at least) a tentative and preliminary 
attitude toward our best scientific theories. This would mean that our 
accessibility to the world is constrained by our current empirical and 
epistemic limitations, allowing us to acquire modal understanding, in the 
sense of having different perspectives of the actual world according to our 
best, current scientific theories.

A similar view has been recently advocated by Barrett (2019). At the 
end of his contribution, he explicitly says: “With respect to the proper choice 
of empirical ontology and debates concerning such things as primitive 
ontology and configuration space realism more specifically, there is arguably 
not much to be gained by trying to stipulate an intuitively preferred 
metaphysics up front (Barrett, 2019, p. 232).” He then recapitulates his 
pragmatist view on the matter saying that “given our epistemic situation, 
one might more profitably adopt a flexible view of the matter without 
trying to stipulate how our experience ought to supervene on the physical 
world once and for all (Barrett, 2019, p 232).” On these passages, Barrett 
is basically revealing the pragmatist role of metaphysical explanation in 
science due to the prerequisite of our best scientific theories to account for 
their empirical adequacy in a reasonable explanatory basis (i.e., among 
other things, being explicit with respect to presuppositions concerned with 
our accessibility to experience that normally remain unnoticed). Indeed, his 
thesis can be read in a way that makes the first option amendable against 
anyone intending to find a single and compelling account of experience 
through our best scientific theories.

4.2. Rejecting object-oriented metaphysics: ontic structural realism

The other option is now on the table. Why do not we simply undermine 
the object-oriented metaphysical presupposition according to which the 
postulated ontology, living either in a three or in a high-dimensional space, 
is constituted by fundamental, distinguishable individual objects as bearers 
of a bundle of intrinsic physical properties?

Based on the stipulation that the metaphysical category of relations 
and structures is ontologically prior to the category of individual objects, 
the claim is to put forward a view of the world supported by BQM according 
to which the self-standing relations and structures represented by the 
relevant equations and Bohmian laws (i.e., the guiding and the Schrödinger 
equations) form the fundamental (or the only existing) categories of the 
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world over and above the individual objects and properties originally 
posited by this theory (i.e., the relata which stand among these relations 
and structures). The project known as ontic structural realism applied to 
the Bohmian context is that of developing this claim rigorously (Ladyman 
et al., 2007; French, 2014).15 Although this project is primarily motivated by 
providing a theoretical ground for structural continuity in scientific change 
(in the general context of the so-called ‘pessimistic induction argument’), 
we shall only endorse this realist thesis based on certain metaphysical 
inferences obtained from BQM: the ontological priority of structures and 
relations over and above other categories or aspects of the word, provided 
these relations and structures are epistemically accessible by means 
of mathematical representations, such as the physical laws and other 
mathematical structures underlying this theory.

Under these circumstances, the metaphysical underdetermination 
between different object-oriented Bohmian interpretations can be dissolved 
by virtue of the fact that the ontologies posited by these interpretations 
can be conceived as different descriptions of the fundamental structure 
of the Bohmian world. More specifically, if the fundamental ontology 
of BQM lies at the level of the structure (i.e., represented by the laws of 
this theory), then we can conceive of the three/high-dimensional views 
as two different ways to describe the fundamental ontology of BQM. 
The underlying reason is that, according to ontic structural realism, the 
Bohmian particles, together with the field, the multi-field, and the world 
particle, are not objects in the standard metaphysical sense (i.e., individual 
bearers of intrinsic properties). Rather, they are either physical modes or 
features of the fundamental structure of the Bohmian laws (in the case 
we endorse the eliminativist version of ontic structural realism); or non-
fundamental objects whose properties are relational in the sense that are 
ontologically dependent upon such a structure (in the case we endorse 
a non-eliminativist version). Contrary to Quine’s criterion of ontological 
commitment, as defined in Quine (1948), we can advance this argument 
in more formal terms by advocating, for example, the truth-maker theory 
of Cameron (2008), and conceive of the three/high-dimensional views as 

15	 Note that there are many versions of ontic structural realism. The eliminative 
thesis associated with this project is the most radical structural position and consists in 
the claim that all things in the world constitute a nexus of fundamental relations and 
structures with no recourse to the existence of the relata upon which these relations and 
structures take place. However, ontic structural realism is also compatible with a view 
that does not eliminate objects. Thus, one might be inclined to think that relations and 
structures are fundamental, in the sense that they are ontologically prior to existing 
relata.
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two different ways to make sense of the theory through the elucidation of 
different true basic predicates, meanwhile the fundamental relations and 
structures represented by the Bohmian laws are the truth-makers of these 
basic predicates.

4.2.1. Objections against ontic structural realism in the Bohmian context

Unfortunately, at least two possible objections may be posed against 
this strategy (considering only relevant objections to the subject matter of 
this contribution). Firstly, that (i) the system of Bohmian laws are expressed 
in terms of object-oriented language, and that it is almost impossible to 
prescind of this language and try to isolate a core set of purely relational 
mathematical structures that can explain alone the empirical predictions 
of BQM; and secondly, that (ii) these laws are defined in configuration 
space, which is intrinsically defined in a three-dimensional space structure, 
hence favouring the three-dimensional view. For sake of simplicity, let us 
first address the first objection, and then proceed to address the second 
one. As we shall see, the response to this second objection requires certain 
mathematical concepts that, to the best of my ability, I shall try to explain 
in more simple terms, relegating the technical details to the Appendices A 
and B.

4.2.2. No problem with object-oriented language

One of the advantages of abandoning Quine’s criterion of ontological 
commitment is that we do not need to reduce ontological questions to 
linguistic facts. On the contrary, as ontic structuralists we believe that basic 
kinds are not necessarily tied to the values of the variables that lie within 
the domain of the quantifiers —if the relevant sentences of the theory are 
to be held as true—, but are just those fundamental constituent entities 
(e.g., extensional relations between variables) that have to exist in order to 
make the relevant sentences of the theory true. 

Thus, although any set of physical laws and principles is expressed 
in terms of both natural and mathematical languages, we do not need to 
detach the object-oriented semantics from the syntactic structure of these 
languages (i.e., we do not need to regiment the theory in a special way), 
because we can allow a theory to assert true sentences about objects without 
these objects being ontological commitments of that theory. This observation 
would allow us to present the underlying fundamental structure of the 
Bohmian world (in terms of which physical laws and principles are framed) 
by means of certain relatively-structured mathematical formulation 
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without having to demonstrate —via a purely-structural, philosophical 
representation— that this formulation is strictly detached from any object-
oriented semantics.

However, since the ontological commitment with respect to BQM is at 
the structural level, regardless of its linguistic representation, we still need 
to account for the empirical adequacy of the relevant structural ontology, 
even if this criterion is assumed to be satisfied at the object-oriented level. 
More specifically, we need to explain how both the manifested macroscopic 
world and the phenomena successfully predicted by BQM, ought to depend 
(or emerge), metaphysically speaking, on (from) the fundamental structural 
ontology. Although I will not address this issue here (i.e., the structural 
counterpart of what is known as the macro-object problem in the literature), 
there is a contention between those that believe that this problem cannot 
be overcome (Maudlin, 2019, Ch. 4), and those that have articulated certain 
metaphysical strategies to provide a satisfactory answer (French, 2014, Ch. 
7). Let us proceed to address the second objection (ii).

4.2.3. Against a preferred space dimension

As already mentioned, BQM is mathematically defined in 
configuration space. As a result, the description of a N-particle system by this 
theory fixes a natural coordinate-ordering of an arbitrary 3N-dimensional 
Euclidean space in terms of N three-ordered tuples of coordinates (Q1(t), 
Q2(t), Q3(t)), (Q4(t), Q5(t), Q6(t)), ⋯ , (QN-2(t), QN-1(t), QN(t)), corresponding 
to each subsystem in three-dimensional Euclidean space. This natural 
ordering compels us to write the laws of the theory in the three-dimensional 
space. In particular, the guiding equation is written in terms of a set of 
N differential equations, each one defined in a three-dimensional vector 
space. This means that a single parametrised curve in configuration space 
uniquely defines N parametrised curves in three-dimensional space.

Considering this observation, one might argue that any ontological 
commitment with respect to the mathematical structure of the laws of the 
theory, provided this structure is regarded as ontologically prior to other 
non-structural categories, is implicitly favouring the three-dimensional 
view: the fundamental space of the theory seems to be the three-dimensional 
physical space by virtue of the fact that the fundamental structural ontology 
(i.e., the Bohmian laws) lives within this space. This would beg the question 
as regards the choice between both three/high-dimensional worldviews.

Fortunately, this objection can be reasonably overcome without 
renouncing to the project of ontic structural realism. In so doing, one 
should note that it is impossible to introduce a natural ordering into a 
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given Euclidean structure without appealing to any additional, external 
element. This means that we cannot construct the configuration space out 
of an arbitrary 3N-dimensional Euclidean space without introducing by 
hand the natural ordering of the three-dimensional space. Granted this, 
one might incorporate, in addition to the 3N-dimensional Euclidean space, 
a fundamental dynamical structure that induces such a natural ordering. 
However, in order to avoid the force of the last objection, this dynamical 
structure should be one which is ontologically prior to any other Euclidean 
structure and which is not mathematically defined neither in the three-
dimensional space nor in the 3N-dimensional Euclidean space. Otherwise, 
one would be begging the initial question by introducing by hand what is 
in principle required to decide between the two rival Bohmian worldviews.

Thus, my suggestion is that this fundamental dynamical structure 
should be dimensionless in the Euclidean sense. In other words, this 
structure should have the property of being defined in a mathematical space 
which is not Euclidean and whose dimension is not Euclidean. Considering 
this suggestion, we would have an Euclidean-dimensionless dynamical 
structure at the top fundamental level of reality, and the three-dimensional 
structure of the laws of the theory would arise from this fundamental 
structure without having any privilege role to play within it. An important 
question still remains: Is there such a fundamental dynamical structure?

To answer this question in the positive, let us first endorse group 
structural realism, a particular way of interpreting ontic structural 
realism. Along the lines of Brian Roberts, we can put forward the claim that 
“The existing entities described by quantum theory [BQM in this case] are 
organised into a hierarchy, in which a particular symmetry group occupies 
the top, most fundamental position (Roberts, 2011, p. 50).” Granted this 
claim, we can proceed to demonstrate that the symmetry group of BQM 
can be associated with a dimensionless fundamental dynamical structure 
from which the non-fundamental three-dimensional profile of the Bohmian 
laws can be induced in a natural and structural way. Let us corroborate 
the reliability of this suggestion by completing the following three-fold 
tasks: firstly, we start by identifying the mathematical language in terms 
of which symmetry groups are framed; secondly, we briefly reveal the 
relatively-structured nature of this mathematical language; and thirdly, 
we proceed to identify the symmetry group of BQM and demonstrate that 
this mathematical structure is dimensionless in the Euclidean sense.

As argued by French (2014, Ch. 5), Lie group theory is one of the 
most suitable mathematical languages in terms of which the fundamental 
dynamical structures underlying our best scientific theories can be 
presented. This is partly explained by virtue of the fact that the expressive 
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power of Lie group theory has been useful in elaborating new formulations 
or reformulations of many successful physical theories capable of generating 
empirical predictions and of improving our understanding about them (e.g., 
their inter-theoretic relations, their mathematical foundations, and their 
physical limitations and possibilities.). In order to understand how Lie group 
theory has become physically relevant and theoretically successful (in the 
sense just described), we should recapitulate the central technical aspects 
that makes this mathematical language work in the appropriate way.

Simply put, a group G consists in a set of (finite or infinite) elements 
with an operation defined between two of these elements to form a third 
element within the group by means of a multiplication rule z = x * y, where 
x, y, z ∈ G. The set and the operation must satisfy the associative property 
and must have both an identity element and an inverse element. If the 
group is a differentiable manifold and the operation * is smooth (i.e., it 
defines a continuous mapping with derivatives of all orders) then it is called 
a Lie group. As one can easily note, this abstract definition does not entail 
a straightforward physical interpretation. However, this interpretation can 
be elaborated by means of the following technical observations:

There are geometrical objects upon which a Lie group acts. These 
can be figures composed of spatial points, such as triangles or squares, but 
they can also be vectors, differential forms, tensors, etc. The action of a Lie 
group on a set of these objects (e.g., a vector space, an affine space, etc.) is a 
‘copy’ of the Lie group defined in that set, in the same way a self-portrait is 
a copy of the artist represented in a canvas. In the particular case of a Lie 
group G acting on a vector space V (a case which will be our main focus in 
this paper), the action of G on V is, in formal terms, a Lie representation of 
G in V: a function that goes from G to the group of automorphisms of V.16 
Since these automorphisms are realised as a set of linear transformations 
or mappings between initial and final points in V, it follows that any 
element of an abstract Lie group G can be interpreted as (or induces via 
a Lie representation) linear transformations in V. For example, the set of 
rotations in three-dimensional space are linear transformations induced 
by the Lie representation of the set of 3 × 3 orthogonal matrices with 
determinant equal to one, called the special orthogonal group SO(3), on ℝ3. 
Thus, in general we have two conceptually different mathematical objects 
that are equivalent (up to a Lie representation): the abstract Lie groups, on 
the one hand, and the induced transformations in the mathematical space 

16	 The state space of a general theory T is not in general a vector space (e.g., the affine 
Minkowski space of special relativity). However, since this contribution is about non-
relativistic QM, only vector spaces are required.
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in which these Lie groups are Lie-represented, on the other. Granted this 
equivalence relation, let us figure out the connection between the abstract 
group-theoretic domain and the physical domain.

As discovered by Weyl (1931) (through what is known as Weyl’s 
programme), Lie groups are abstract mathematical objects that have 
no physical interpretation unless they act upon the state space V of 
a physical theory T (hereinafter, vector space V of  T). As demonstrated 
by him, the way this interpretation is revealed is through the concept of 
invariance: the Lie representation of a Lie group G in V takes the form 
of linear transformations that leave certain sorts of objects invariant, 
which are interpreted as physical symmetries. In particular, the induced 
transformations of G can be associated with the dynamical evolution of a 
physical system described by the laws of T.

Considering this association, we say that the abstract Lie group 
G is a symmetry group of a theory T describing some physical system if 
the fundamental laws of T are invariant under the induced continuous 
transformations of G in the vector space V of  T (i.e., the Lie representations 
of G in V). Since the laws of a theory T can be reformulated in this way —as 
invariants of a certain symmetry group G—, the identification of G (together 
with the vector space V of T in which G is Lie-represented) is sufficient 
to determine (up to approximations and idealisations) its dynamical 
structure, and furthermore, the complete laws of T can be obtained by Lie-
representing G in V. It is partly due to this illuminating bridge between 
abstract mathematics and dynamics in physics that makes group theory 
both predictably and theoretically successful. Once we have introduced the 
central technical elements of Lie group theory, let us proceed to address our 
second task.

Based on the fact that any Lie group element induces a group 
transformation on a vector space, we can interpret any Lie group as an 
abstract mathematical object that generates (physical) binary relations on 
the vector space in which it is Lie-represented. For example, any simple 
rotation in the three-dimensional Euclidean space, induced by any element 
of the SO(3) acting on that space, can be interpreted as a binary relation 
between the initial and the final coordinates of the rotation angle. This 
alone suffices to convince us that any Lie group is an abstract mathematical 
object that induces a physical interpretation intrinsically relational or 
structural when they are Lie-represented in vector spaces.

But we can advance this claim as regards the relational structure 
of Lie groups themselves without being Lie-represented in vector spaces. 
According to Arthur Eddington, the Lie group language expresses (in 
abstract terms) the second-order relationships that hold between physical 
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relations. In his own words, “Whatever the nature of the entities, the use 
of group theory allows us to abstract away the ‘pattern’ or structure of 
relations between them. What the group-structure represents, then, is the 
‘pattern of interweaving’ or ‘interrelatedness of relations’ (Eddington, 1941, 
pp. 137-140).” This can be illustrated by appealing to the multiplicative 
law of SO(3), where any element of this Lie group can be obtained by the 
composition of two or more elements of the same group, inducing successive 
and continuous rotations in the three-dimensional Euclidean space. 
Therefore, group-theoretic structures underlying (or compatible with) 
our best scientific theories are likely to be relational or structural in this 
second-order sense, completing our second task. Let us now address our 
third and final task: What is the symmetry group of BQM?

The precise answer to this question shall be relegated to the 
Appendices A and B, where technical concepts and definitions are explained. 
As for the present purposes, it suffices to make the following important 
observations, followed by the explicit disclosure of this symmetry group.

Let us recall that the world particle dynamics in BQM is 
mathematically defined in the 3N-dimensional configuration space. 
However, as explained in the Appendix A, one can also define such Bohmian 
particle dynamics in the cotangent bundle of the M-dimensional Euclidean 
space (hereinafter, 2M-phase space) —in an analogous fashion to the 
position-momentum phase space in Hamiltonian mechanics—, provided 
the M-dimensional configuration space of this theory is obtained from the 
natural ordering of an arbitrary M-dimensional Euclidean space, where 
M=3N for a system of  N  particles. Considering that in BQM the physical state 
of a N-particle system is not only mathematically defined in the 3N-Hilbert 
space (i.e., the infinite mathematical space of wave functions evaluated in 
the 3N-dimensional configuration space), but also in the 6N-phase space 
(i.e., the mathematical space of the world particle dynamics), the symmetry 
group of BQM should satisfy the following condition: both the Hilbert space 
and the phase space must be associated with Lie representation spaces in 
which this symmetry group is Lie-represented.17

Granted this condition, my suggestion is to identify the symmetry 
group of BQM with the inhomogeneous metaplectic group IMp(M), which 

17	 Note that 3N is not the dimension of the 3N-Hilbert space, but the dimension 
of the configuration space in which any element of L2(ℝM,ℂ) is evaluated. In general, 
the 3N-Hilbert space is infinite-dimensional as wave functions are generally defined 
as functions of continuous variables. This implies that IMp(M) does not admit Lie-
representations of finite dimension; they are in fact unitary representations. Fortunately, 
we shall see below that IMp(M) can be expressed in terms of finite-dimensional matrices 
via an algebraic and topological mapping.
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is equivalent (up to an algebraic and topological mapping known as 
maximal central extension) to the dynamical group-theoretic structure of 
Hamiltonian mechanics, i.e., the inhomogeneous symplectic group ISp(M) 
(see definitions in the Appendices A and B).

This identification not only reveals that, from the group-theoretic 
point of view, BQM can be interpreted as a Hamiltonian theory up to an 
algebraic-topological mapping, but also that the physical state and the 
evolution of a Bohmian system, including the Schrödinger equation and the 
guiding equation, can be completely determined by the Lie representation 
of IMp(M) in the 3N-Hilbert Space and the 6N-phase space, respectively. In 
Maurice de Gosson’s words:

[...] Both classical and quantum mechanics rely on the same mathematical 
object, the Hamiltonian flow, viewed as an abstract group. If one 
makes that group act on points in phase space, via its symplectic Lie 
representation, one obtains Hamiltonian mechanics. If one makes it act 
on functions, via the metaplectic representation, one obtains quantum 
mechanics. It is remarkable that in both cases, we have an associated 
theory of motion: in the symplectic representation, that motion is 
governed by Hamilton’s equations. In the metaplectic representation, it 
is governed by Bohm’s equations (de Gosson, 2001, p 267).

Considering that both Hamiltonian mechanics and BQM can be 
formulated in the same way at the level of an abstract, group-theoretic 
structure, we may be ready to come back to our original task: Why the 
symmetry group of BQM is dimensionless in the Euclidean sense?

At first sight, there seems to be no difficulties in demonstrating 
that Lie group theory is a dimensionless mathematical language in the 
sense the vector space V of the theory defines its dimension (the 3N-Hilbert 
space and the 6N-phase space in the Bohmian case). The group dimension 
is defined in terms of the number of independent elements a given Lie 
group G contains or, more formally, the dimension of its underlying 
differential manifold. This definition is so abstract that there seems to be 
no direct connection to the dimension of the vector space V in which G is 
Lie-represented, formally defined as the number of vectors that the linear 
basis of V possesses or, in more familiar terms, the minimum number of 
independent coordinates (degrees of freedom) needed to specify a point 
within V. However, when we try to interpret the group dimension physically, 
we can start to see some slight connections with the dimension of V. The 
question that interests us is whether these connections are such that the 
symmetry group of BQM (i.e., IMp(M)) can be considered the fundamental 
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dynamical structure from which the Bohmian laws arise as invariants 
without the three-dimensionality of these laws having a privilege role to 
play within IMp(M).

Let us remind that each element of a Lie group G induces a 
transformation in the vector space V where it is Lie-represented. Since G 
might have different group elements, one also might have different type 
of transformations in V. For example, the usual Galilean group Ggal (3) 
possesses ten different elements, each one which can be Lie-represented in 
the Euclidean space as three rotational parameters, three boosts parameters, 
three space translation parameters and one time translation parameter. For 
this reason, Ggal (3) is an abstract Lie group of dimension equal to ten, whilst 
its physical interpretation consists in ten different types of transformations 
occurring in the (3+1)-dimensional Euclidean space. However, it is not 
the same to have rotations, boosts and space translations in the three-
dimensional Euclidean space rather than in the Euclidean plane. If we had 
two different Euclidean spaces with different dimension (e.g., one of two and 
another of three, excluding the temporal dimension), the structure of the 
inducing transformations would differ in the same way that the structure of 
Ggal (3) itself. Although the multiplication law of Ggal (3) remains intact, the 
group dimension differs depending on whether it is Lie-represented in the 
two or in the three-dimensional Euclidean space, corresponding to six and ten 
group elements, respectively. Indeed, for any dimension M of the Euclidean 
space where the general Galilean group Ggal (M) is Lie-represented, the 
group dimension of this Lie group is equal to M(M+3)/2+1. As for a general 
finite-dimensional Lie group G, this means that, although the second-order 
structure of G (given by the multiplication law) remains intact, the dimension 
of G depends on the space in which it is Lie-represented.

Coming back to our main concern, the last conclusion is corroborated 
by the fact that IMp(M) has dimension equal to M(2M+3)+1, for any 
M-Hilbert space and for any 2M-dimensional phase space. Thus, we may 
conclude that, although it is true that the group dimension of IMp(M) 
is not defined in the same manner as that of the Hilbert space and the 
phase space, the Lie group structure of as a whole, where the dimension of 
IMp(M) is included, contains information about the dimension of these Lie 
representation spaces. This does not mean that IMp(M) possesses alone a 
three-dimensional structure. Rather, since the multiplication law of IMp(M) 
is unique and compatible with many group dimensions associated with the 
Lie representation space, the three-dimensionality of the Bohmian laws 
arises from IMp(M) by singling out only one particular dimension (i.e., the 
dimension associated with configuration space M=3N), without IMp(M) 
being necessarily dependent on a three-dimensional structure.



ANÁLISIS FILOSÓFICO - PRÓXIMA APARICIÓN

ON A BOHMIAN STRUCTURAL APPROACH WITHOUT SPACE FUNDAMENTALITY 25

In this way, it makes sense to argue that the symmetry group of BQM 
is ontologically prior to the dimension of the Hilbert space and the phase 
space in which this group is Lie-represented. What is needed, corresponding 
to our initial concern, is just the stipulation that IMp(M) is the fundamental 
structure of BQM, from which everything else metaphysically depend. In 
particular, the dimension M of the Euclidean space associated with the 
M-Hilbert space and the 2M-phase space arises from this group-theoretic 
structure as a free parameter that takes any possible integer number, 
including the one which leads to the Bohmian laws (i.e., when M=3N holds). 
Let us make four final remarks.18

Firstly, considering that for each M the abstract group IMp(M) allows 
the possibility of having a different induced structure at the level of the 
Hilbert space and the phase space, one might think that if IMp(M) is the 
fundamental structure from which everything else metaphysically depend, 
it has to explain why Bohmian laws are three-dimensional and why we 
observe macroscopic objects in the three-dimensional physical space. In 
other words, IMp(M) has to explain alone why the manifested space of our 
senses and experiences possesses a particular and privileged dimension 
M=3N without begging the question and recurring to any three-dimensional 
structure. This is the macro-object problem that was mentioned earlier and, 
although I recognise that a complete answer to our initial concern cannot 
be addressed without solving this problem, we need to relegate this issue 
to another contribution. In other words, the purpose of this contribution is 
to focus on the underdetermination problem within the Bohmian context, 
provided that the macro-object problem is assumed to be solved. 

Secondly, note that there could be many ways to reformulate the 
Bohmian laws or any structural Bohmian ontology in a way that we 
end up with a problem of structural (as opposed to object-oriented) 
underdetermination within BQM. In other words, one might be skeptic 
of endorsing group structural realism because nothing ensures us that 
IMp(M) is the true group-theoretic structure of this theory. For example, 
this objection to group structural realism is reinforced by Roberts (2011), 
where it is claimed that there could be an infinite tower of group-theoretic 
structures homeomorphic to each Lie symmetry group. This argument 
alone would suffice to argue that if we endorse group-structural realism by 
making, in particular, an ontological commitment with respect to IMp(M), 
we end up with a strong and unavoidable structural underdetermination 
that would undermine the possibility of overcoming our initial concern 

18	Thanks to one of the reviewers for pushing me to emphasize and clarify the third 
and fourth remark. 
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regarding the underdetermination between the three and the high-
dimensional worldviews. Although I think that this issue cannot be 
strictly solved as the very nature of metaphysics is to be condemned by its 
unavoidable condition of being underdetermined by any kind of knowledge, 
one might propose to see this structural underdetermination within BQM 
as a question of degree without abandoning scientific realism. That is, we 
should look at group structural realism as the metaphysical framework 
compatible with BQM that is relatively less underdetermined than the 
available alternatives. In more precise terms, the idea is that the more 
one approaches the fundamental level in the metaphysical hierarchy of 
the Bohmian world the less underdetermined is the ontology of BQM. As 
illustrated by the previous analysis, the resulting underdetermination at 
the non-fundamental level of the object-oriented Bohmian ontology (i.e., 
the three/high-dimensional worldviews) is relatively maximal, whilst it is 
relatively minimal at the level of the fundamental structural ontology of 
the theory (i.e., group-theoretic structures, such as IMp(M)).

Thirdly, related to the previous remark, one might say that, based on 
the Bohmian formulation expressed in Section 2, the structure underlying 
BQM is more robust than that of standard QM because it introduces the 
guiding equation in addition to the standard formulation. Considering this 
observation, one might wonder whether there are sufficient reasons to 
claim that, if both theories are empirically equivalent, we should prefer the 
most robust alternative. However, it should be noted that one cannot decide 
between the structure of BQM or that of standard QM by means of the 
metaphysical virtue of parsimony (i.e., the opposite virtue of robustness). As 
elucidated in Section 3, parsimony is an immanent and contextual criterion. 
Defined as such, it is not related to the question of truth and cannot solve or 
dissolve the underdetermination issue. For example, BQM might be a more 
robust interpretation but at the same time it might be more amendable 
to ontological continuities, such as in the classical-quantum transition. 
Furthermore, one of the reasons to prefer a structuralist metaphysics instead 
of an object-oriented metaphysics is that the former and not the latter may 
partially respond to the pessimistic meta-induction argument associated 
with the problem of theory change. The theoretical structure capable of 
solving this problem should be such that it must exhibit some ‘plasticity’, in 
the sense that it should be preserved among theoretical transitions. Under 
these circumstances, BQM’s structure should be preferred due to the fact 
that it retains its structural content in the classical-quantum transition, as 
opposed to standard QM’s structure.

Fourthly, it is claimed that BQM remains relevant and continues to 
be debated because it employs an object-oriented metaphysics, in which 
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the objects are point particles, making it easier to understand and more 
appealing, as it resembles classical mechanics. However, if one abandons 
object-oriented metaphysics and adopts group structural realism, where the 
ontology is more abstract, what justification remains for BQM as a whole, 
given that it is empirically equivalent to standard QM and has an ontology 
that is equally or even more abstract? Since group structural realism is 
able to dissolve the metaphysical underderdetermination that predates 
at the object-oriented level, we have sufficient reasons to prefer this 
metaphysical stance over and above any object-oriented metaphysics. This 
claim compels us to ask another question: Why should we prefer to solve the 
underdetermination issue instead of rejecting a more abstract metaphysics? 
The answer, in my view, is that the underdetermination problem is an 
epistemic challenge that neglects the mere possibility of endorsing a realist 
stance with respect to science, whilst the question of whether a metaphysics 
is abstract or concrete is pragmatic and independent of the question of 
truth. The point of Section 3 is to argue that no theoretical or metaphysical 
virtue is available in order to brake the metaphysical underdetermination 
among Bohmian interpretations at the object-oriented level. If someone 
argues that a criterion associated with abstractness can be adopted in favor 
of object-oriented metaphysics and against group structural realism, her 
argument is objectionable by exactly the same reasons elucidated in Section 
3, but extrapolated to the object-structure metaphysical dispute. In fact, 
any metaphysical virtue, such as abstractness, is not immune to further 
concerns associated with its normative and regulative nature: How much 
abstractness one needs? How abstractness is interpreted among different 
metaphysical views? As is the case for any kind of metaphysical virtue, 
abstractness is immanent and contextual in the sense that it is highly 
dependent on the kind of metaphysics adopted, apart from the fact that 
there is no unique way to specify in any particular situation the precise 
conditions for this virtue to be satisfied. 

Considering these final remarks, together with the rest content of 
the paper, we conclude that the underdetermination between the three 
and the high-dimensional worldviews does not pose a serious challenge to 
interpret BQM in realist terms.

5. Concluding Remarks

After assessing different interpretative Bohmian frameworks in 
the light of the three/high-dimensional worldviews, we cannot escape 
from the unfortunate metaphysical underdetermination that infects these 
alternatives even if we appeal to theoretical or metaphysical virtues. This 
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conclusion does not mean that Bohmian realists have to abandon the 
project of elucidating the best realist picture in this context. They have at 
their disposal other two alternatives that block the objection posed by the 
resulting underdetermination problem: either acceptance of this problem 
via a pragmatist approach or the appeal to group structural realism that 
challenges the reality or fundamentality of Bohmian objects and properties 
in terms of which this problem is based. Considering that we stay within 
the limits of (non-pragmatist) scientific realism, we endorse the second 
alternative as opposed to the first one. 

APPENDICES

A. The symmetry Group of Bohm’s Theory

Some scholars, such as Dürr et al. (1992), take for granted that the 
symmetry group of BQM is the same to that of classical mechanics: the 
ten-dimensional connected Lie group known as the Galilean group Ggal (3) 
in three-dimensional space and absolute time (see B.1 in the Appendix B). 
However, the physical scope of this Lie group is constrained by the fact 
that it is not precisely a dynamical symmetry group but only a spacetime 
one. This means that Ggal (3) only induces spacetime transformations (i.e., 
boosts, translations and rotations) whose invariances are restricted to 
mathematical structures defined in (3+1)-dimensional spacetime, such 
as the guiding equation but not the Schrödinger equation. Although it is 
true that Ggal (3) can be Lie-represented in Hilbert space by means of an 
appropriate quantisation, many contributions (to be mentioned below) have 
pointed out that the projective (multi-valued) nature of this representation 
cannot make the Schrödinger equation a strict invariant of the theory. 
Not less to say that some quantum properties, such as the spin, are not 
invariants of spacetime rotations, boosts, and translations. Thus, it seems 
that the correct symmetry group of BQM should have a richer structure to 
that of Ggal (3).

From the results developed by Greenberger (2001), our first 
suggestion is to associate the dynamical symmetry group of BQM with 
that of the non-relativistic limit of standard QM, namely, the central 
extension of Ggal (3) (see B.7 in the Appendix B). Contrary to Ggal (3), this 
algebraic extension possesses an additional group element (i.e., a real 
number corresponding to the generator of mass) that accounts for certain 
quantum features in the non-relativistic limit, such as mass/charge 
superpositions. However, it is an eleven-dimensional double-connected Lie 
group that accepts an appropriate Lie representation in Hilbert space of its 
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group elements that induce (under the Lie representation in the Euclidean 
three-dimensional space) boosts, spacetime translations and rest-mass 
differences between inertial observers, with the unfortunate exception of 
the one that induces spacetime rotations i.e., transformations that arise as 
a consequence of Lie-representing a subgroup of Ggal (3) in the Euclidean 
three-dimensional space: the special orthogonal group SO(3).

The fact that this group element cannot be ‘appropriately’ Lie-
represented in Hilbert space means that some quantum phenomena, such 
as 1/2-spin particles, cannot de described by the central extension of Ggal 

(3) unless one accepts double-valued (or projective) Lie representations. 
Since the Lie representation of SO(3) in the Hilbert space is double-valued, 
vectors that are equivalent up to 2π rotations in the three-dimensional 
Euclidean space are not equivalent in the Hilbert space (they differ up 
to a minus sign); vectors are, in fact, equivalent in the latter space up to 
4π rotations. In physical terms, this means that for every two successive 
2π rotations induced by SO(3) along each coordinate axis of the three-
dimensional Euclidean space, there are exactly two invariant vectors in 
the Hilbert space (differing up to a minus sign) associated with two discrete 
1/2-spin values.

Fortunately, there is still a better suggestion that may overcome 
these difficulties. To appropriately define a Lie representation in Hilbert 
space for the full group (including the ‘rotational’ element) one must appeal 
not only to the algebraic extension of Ggal (3) but also to its topological 
extension, namely the universal cover of Ggal (3) (see B.8 in the Appendix 
B). Including both the algebraic and topological extensions of Ggal (3), the 
maximal central extension of this Lie group is obtained. The need for the 
topological extension of this group-theoretic structure can be illustrated 
by appealing to the example of 1/2-spin again. Considering that SO(3) is 
the (non-normal) subgroup of Ggal (3), we can compute the universal cover 
of SO(3) (in this case, the double cover) and obtain SU(2). The important 
feature associated with this Lie group, as opposed to SO(3), is that it admits 
a single-valued Lie representation in the Hilbert space, meaning that there 
exists an unique transformation induced by SU(2) in the Hilbert space 
associated with the two-fold 1/2-spin values along each coordinate axis. 
However, although the guiding equation and the Schrödinger equation can 
be shown to be invariant under the maximal central extension of Ggal (3), it 
is difficult to see how these particular equations, together with the evolution 
of the Bohmian state, uniquely arise from this group-theoretic structure 
when it is Lie-represented in the Hilbert space and the configuration space. 
Under these circumstances, one should be looking for a richer structure 
to this group maximal extension that can account for both single-valued 
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representations and the complete laws of BQM. This task will be achieved 
as follows.

Considering that in BQM the quantum state of a N-particle system is 
not only mathematically defined in the 3N-dimensional configuration space 
(i.e., the mathematical space of the world particle dynamics), but also in the 
3N-Hilbert space (i.e., the infinite mathematical space of wave functions 
evaluated in the 3N-dimensional configuration space), let us start this task 
by introducing a condition that the symmetry group of BQM should satisfy: 
both the Hilbert space and the configuration space must be associated with 
Lie representation spaces in which the symmetry group of the theory are 
Lie-represented. Granted this condition, we shall see that the maximal 
central extension of Ggal (3) is a subgroup of a wider symmetry group, i.e., 
the inhomogeneous metaplectic group IMp(M), which is equivalent (up to a 
maximal central extension) to the dynamical group-theoretic structure of 
Hamiltonian mechanics, i.e., the inhomogeneous symplectic group ISp(M) 
(see B.4 in the Appendix B). This association shall reveal that, from the 
group-theoretic point of view, BQM can be interpreted as Hamiltonian 
theory up to an algebraic-topological mapping. Let us proceed to describe 
this association in more detail.

As is well known by mathematical physicists, the mathematical 
formulation of Hamiltonian mechanics follows directly from the invariance 
and conditions of integrability of Hamilton’s equations under coordinate 
transformations in phase space. From the geometrical point of view, the 
solutions of Hamilton’s equations are integral curves of a vector field 
associated with the Hamiltonian flow, a one-parameter diffeomorphism 
which takes initial points to final points in phase space retaining the 
invariance of Hamilton’s equations (i.e., canonical transformations). From 
the group-theoretic point of view (see B.2 and B.3 in the appendix B), 
however, the Hamiltonian flow is a symplectic matrix (up to derivatives) 
generated by the Lie representation of the symplectic group Sp(M) in the 
cotangent bundle of the M-dimensional Euclidean space (i.e., 2M-phase 
space), where M=3N for a system of N particles. The essential aspect of 
the Hamiltonian flow expressed in terms of Sp(M) is that it completely 
determines the evolution of a classical mechanical system of N particles 
without the need to appeal to Hamilton’s equations. There is, however, one 
important result that follows from the symplectic structure of Hamiltonian 
mechanics that we should not leave unnoticed. The Galilean group Ggal 

(3) is a subgroup of a group-theoretic structure associated with Sp(M). 
Indeed, we can add to Sp(M) space translations and boosts redefined in 
the 2M-dimensional phase space and obtain the inhomogeneous symplectic 
group ISp(M). It turns out that Ggal (3) can be seen as a subgroup of ISp(M), 
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meaning that the spacetime transformations naturally induced by Ggal (3) 
in the three-dimensional Euclidean space can be seen as transformations 
defined in the 6N-dimensional phase space.

Alternatively, a similar group-theoretic approach can be adopted in 
the case of BQM. In the same way that Ggal (3) is as a subgroup of ISp(M), 
the maximal central extension of Ggal (3) can be seen as a subgroup of the 
inhomogeneous metaplectic group IMp(M), where M=3N for a system of 
N particles. Whilst the inhomogenous part of IMp(M) corresponds to the 
group of the position-momentum uncertainty relations (i.e., the polarised 
Heisenberg group), the homogenous part of IMp(M) corresponds to the 
metaplectic group Mp(M) (see B.5 and B.6 in the Appendix B). Although 
a complete understanding of Mp(M) would require more technical details, 
it simply means that it is a group-theoretic structure that admits a Lie 
representation in the M-Hilbert space, together with the fact that the one-
parameter group of unitary operators and that of symplectic matrices are 
related in a straightforward manner: Mp(M) may be recovered by computing 
the double cover of Sp(M). This implies (appealing to a path-lifting property 
of covering groups) that the classical Hamiltonian flow (i.e., the one-
parameter subgroup of Sp(M)), is equal (up to a group homomorphism) to 
the quantum Hamiltonian flow (i.e., the unique one-parameter subgroup 
of Mp(M)).

It turns out that the evolution of a Bohmian system (including the 
evolution of the Bohmian world particle) can be completely determined by 
the Lie representation of IMp(M) in the M-Hilbert Space and the 2M-phase 
space (as opposed to the usual formulation in terms of the Schrödinger and 
guiding equations), where M=3N for a system of N particles. In particular, 
the Schrödinger equation and the guiding equation arise by representing 
the inhomogeneous metaplectic group in Hilbert space and phase space, 
respectively.

B. Definitions of Lie Groups

1. Galilean Lie group

The Galilean group Ggal (3) is a 10-dimensional connected Lie group 
defined by the following semi-direct product:19

19	 A group G is a semi-direct product of a normal subgroup S and a subgroup K, 
denoted by S ⨂S K, if G is expressed as a pair (s, k), where s ∈ S and k ∈ K, such that the 
associated product rule is (sa,ki) ∙ (sb,kj)= (sa sb

ki,ki kj), where sb
ki  is the action of  sb by ki.
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Ggal (3) ≃ ℝ4 ⨂S  (ℝ3 ⨂S SO(3))

The group elements are labeled by g = (b, r, v, R), where b ∈ ℝ, r ∈ ℝ3, 
v ∈ ℝ3 and R ∈ SO(3) are Lie-represented in (3+1)-dimensional spacetime 
as time translations, space translations, velocity boosts and rotations, 
respectively.

2. Symplectic matrix

A symplectic matrix s is a 2M × 2M matrix that obeys sT  J s = J, where   
J is the block matrix:

3. Symplectic Lie group

The symplectic group Sp(M) is a M(2M+1)-dimensional connected 
Lie group that forms the set of all symplectic matrices with real entries 
and unit determinant (i.e., a subgroup of the special linear group SL(2M,) 
under matrix multiplication).

4. Inhomogeneous symplectic Lie group

The inhomogeneous symplectic group ISp(M) is a M(2M+3)-
dimensional connected Lie group defined by the semi-direct product of the 
symplectic group Sp(M) and the translation abelian group A(2M), which is 
homeomorphic to the Euclidean group ℝ2M:

ISp(M) ≃ ℝ2M ⨂S Sp(M)

The product rule is (wa,Ai) ∙ (wb,Aj)= (wa wb
Ai , Ai Aj) where wa wb

Ai = wa+ Ai 

wb  and w ∈ ℝ2M, A ∈  Sp(M).

5. Polarised Heisenberg Lie group

The polarised Heisenberg group Hpol(M) is a simply connected and 
connected Lie group, usually defined in terms of the multiplicative group 
of upper triangular  (2M+1) × (2M+1) matrices. The underlying manifold is  
ℝ2M+1 and is topologically defined as the semi-direct product of:
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Hpol(M)  ℝ2M+1 ⨂S ℝM

whose expression is due to the existence of a non-degenerate alternating 
ℝ-bilinear form p ∙ r': ℝ2M ⨂S ℝ2M → ℝ such that the product rule of the 
group is  (t, z) ∙ (t', z') = (t + t'+ p ∙ r', z + z') where z = (r, p) ∈ ℝ2M, t ∈ ℝ.

6. Metaplectic Lie group

As defined in de Gosson (2001, Ch. 6), Mp(M) is a connected Lie 
group defined by the set of all products of a finite number of quadratic 
Fourier transforms of the type:

where the integers m are defined over Mp(M) by m(SW,m)=arg (Hessr∙r') (-W))
mod 4. They are the Maslov index of the quadratic form W (i.e., a generating 
function in phase space).

7. Central Extension

An extension of a group H by a group N is a group G with a normal 
subgroup M such that M ≃ N and G/M ≃ H. Thus, there is a short exact 
sequence of groups:

where α ∶ N→G is injective, β ∶ G→H is surjective, and the image of α is 
the kernel of β. An extension is called a central extension if the normal 
subgroup N of G lies in the center of G (the set of elements that commute 
with every element of G).

8. Symplectic covering groups

The symplectic group Sp(M) generates a set of connected Lie groups 
Sp2(M), Sp3(M), ... ,Spq(M), ... , Sp∞(M), called q-order covering groups, such 
that for every q there is a group homomorphism (covering homomorphism) 
πq : Spq(M) → Sp(M) with the following properties: 

If q <∞



ANÁLISIS FILOSÓFICO - PRÓXIMA APARICIÓN

JORGE MANERO34

1.	 πq is surjective and q-to-one. In other words,  πq
-1 ( ) contains  q 

elements
2.	 πq is continuous and a local diffeomorphism: ∀s∈ Sp(M),  ∃US an 

open neighborhood, such that πq
-1 (US)= ⋃kUk, where Uk is the 

neighborhood of  Sk ∈ Spq(M) and Ui ⋂ Uj ,∀ i, j.

If q = ∞

1.	 Sp∞(M) is called the universal cover and π∞
-1 ( ) = (ℤ,+) the 

fundamental group of Sp(M). Since π∞ is a homomorphism and 
sends (ℤ,+) to the identity element, Sp∞(M) is simply connected.
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