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Abstract

David Ripley has argued extensively for a nontransitive theory of truth by dropping 
the rule of Cut in a sequent calculus setting in order to get around triviality caused 
by paradoxes such as the Liar. However, comparing his theory with a wide range of 
classical approaches in the literature is problematic because formulating it over an 
arithmetical background theory such as Peano Arithmetic is non-trivial as Cut is 
not eliminable in Peano Arithmetic. Here we make a step towards closing this gap 
by providing a suitable restriction of the Cut rule, which allows for a nontransitive 
theory of truth over Peano Arithmetic that is proof-theoretically as strong as the 
strongest known classical theory of truth.
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Resumen

David Ripley ha argumentado extensamente a favor de una teoría no transitiva de 
la verdad que abandona la regla de Corte para así evitar las pruebas de trivialidad 
causadas por paradojas como la del mentiroso. Sin embargo, es problemático 
comparar su teoría con varias teorías clásicas que se han ofrecido en la bibliografía. 
La tarea de formular esta teoría sobre la aritmética de Peano no es trivial, ya que 
Corte no es eliminable en la aritmética de Peano. En este artículo intento cerrar esta 
brecha proponiendo una restricción adecuada para la regla de Corte. La restricción 
nos permite formular una teoría no transitiva de la verdad sobre la aritmética de 
Peano que es, desde el punto de vista de la teoría de la prueba, tan fuerte como la 
teoría clásica de la verdad más fuerte conocida hasta el momento. 
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Truth, Cut and PA

David Ripley argued extensively for a nontransitive theory of 
truth by dropping the rule of Cut in a sequent calculus setting in order 
to get around triviality caused by paradoxes such as the Liar. He has 
made advancements in this direction in a more model-theoretic fashion 
(Ripley, 2012) as well as more proof-theoretically (Ripley, 2013a). His 
upcoming book Uncut (Ripley, 2018) will surely give a great overview 
over the research that went into nontransitive and other substructural 
theories of truth and their motivations. Here we want to advance the 
project of a nontransitive theory of truth by proposing a restriction of 
Cut, which allows for proof-theoretically very strong non-transitive 
theories over the arithmetical theory of Peano Arithmetic (PA).

In comparison to substructural theories of truth, classical theories 
have been around a lot longer and are often more technically advanced 
and well understood. Especially with classical theories of truth it is 
standard to study truth-theoretical principles with a background of 
arithmetical axioms, typically those of PA. Authors engaging in this 
work cite a couple of reasons for doing so (see e.g. Halbach, 2011), but 
here we are not concerned with these reasons. If one is not convinced by 
these (or other) reasons or likes to think of the nontransitive approach 
as going in a different direction, the following observations about a 
nontransitive theory of truth over PA might still be interesting due to 
a technical curiosity and the possibility to compare the nontransitive 
approach with a long and established line of papers in the literature.

Independently of the chosen background theory, the truth 
predicate T is seen as a predicate applying to terms t, among which are 
names of sentences. One benefit of using a suitably strong arithmetical 
background theory is that it can handle the coding necessary to refer to 
sentences via codes. We work in the language of first-order arithmetic 
containing the zero-constant 0̄  , a symbol for the successor function S, 
as well as for basic arithmetical operations x, + with the standard 
interpretation and of course our truth-predicate T. The standard 
inductive definition for wffs applies. We then fix a standard Gödel-coding 
(see e.g. Smith  (2012)) and write #ϕ for the Gödel-code of ϕ and ⌜ϕ⌝  
for the numeral of the Gödel-code of ϕ. Where n is a natural number, we 
denote its numeral by n̄ .

A primitive recursive substitution function s is represented by 
its function symbol s. . Where ϕ is a formula with only x free, s.(⌜ϕ⌝, 
t) is to be read as the numeral of the code of the result of replacing 
every occurrence of x in ϕ by t. The dot notation such as s.(⌜ϕ⌝, t) is an 
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abbreviation for ⌜ϕt⌝. This allows us to quantify into predicate position, 
into e.g. the truth predicate with e.g. ∀xT ⌜ϕx. ⌝. 

We work in a sequent calculus environment. Where Γ and Δ are 
sets of formulae of L, Γ⇒Δ is a sequent. Ripley’s nontransitive logic ST 
(for strict-tolerant) with some minor modifications to fit in identity is 
given by the following sequent rules:

given in ≠ that s = t does not hold and given in = that s = t holds.

As always, y in the right ∀-rule must be an eigenvariable. 
Crucially, the rule of Cut

is not included in STT.
The structural rules of Contraction

are trivially admissible in the system, since sequents are defined using 
sets rather than multisets. The structural rules of Weakening are 
admissible as well (see e.g. Negri, von Plato & Ranta, 2001, p. 75).
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We are now interested in formulating the theory of PA over our 
nontransitive logic ST. In order to guarantee that the resulting theory 
proves the same sequents as when formulating PA over fully structural 
classical logic, it must be the case that Cut is in principle eliminable. 
We begin with Robinson Arithmetic (Q), i.e. PA without Induction. (von 
Plato, 2014) has shown that there is a formulation of the axioms of Q  
as sequent-rules, s.t. Cut in the resulting theory is eliminable (given a 
suitable formulation of the logical rules as e.g. given above):

Where y in Q3 must be an eigenvariable. So there is no inherent 
problem of formulating Q over ST in terms of the sequents being 
provable1. However, things change as we proceed to full PA by adding 
Induction as a rule:

The result of adding the rules Q1 — Q6 and Induction to ST is 
called STA (for strict-tolerant arithmetic). It is easy to show that STA  
does not prove the same sequents as PA, since Cut is not eliminable 
in the latter theory (Troelstra & Schwichtenberg, 2000). Since our 
nontransitive theory lacks Cut, there are sequents of  PA, which it does 
not prove. We take it that this is not acceptable for a theory of truth 
based on an arithmetical background theory. Although some rule needs 

1 There might still be issues with respect to the length of proofs–see Boolos (1984)– 
but we are not concerned with these here.
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to be restricted in order to block the paradoxes, a theory of truth should 
at least preserve all things provable in the background theory.

Thus what we need is a restriction of the Cut rule, s.t. at least 
all sequents of PA are provable but adding suitable rules for T does not 
result in triviality. A straightforward restriction would be to simply 
allow Cut iff the Cut-formula is arithmetical, i.e. does not include T. This 
would block the above problem and ensure that STA proves the same 
sequents as PA. Consider this option for the moment.

We finally extend our nontransitive arithmetical theory to a 
theory of truth STAT (for strict-tolerant arithmetical truth) by adding 
the following T-rules:

Although STAT proves all sequents of PA, it can also easily be 
shown that it is conservative over PA:

Lemma 1.1.  Let ϕ ∈ Γ ∪ Δ  be arithmetical. If ⊢STAT Γ ⇒ Δ, then   
⊢PA Γ ⇒ Δ.

Proof. Assume for contradiction that there is an arithmetical 
sequent Γ ⇒ Δ s.t. STAT proves it, but PA does not. Then there must at 
least one application of TL or TR in the proof. However, STAT has no 
elimination rules for T and Cut is restricted to arithmetical formulae. 
Thus the introduced truth-predicate cannot be eliminated, contradicting 
the fact that Γ ⇒ Δ  contains only arithmetical formulae. ◻

It might be objected that this argument can be blocked by adding 
elimination rules for T (as Ripley often does):

But this does not strengthen the system as the rules are 
admissible in STAT:

Lemma 1.2.  T-outL and T-outR are admissible in STAT.

Proof. The proof is by Induction on the height of the proof. If T 
⌜ϕ⌝, Γ ⇒ Δ is an initial sequent, we distinguish the following cases. If  Γ 
⇒ Δ is an initial sequent as well, so is ϕ, Γ ⇒ Δ. If it is not, then T ⌜ϕ⌝ 
must be in Δ. We first obtain ϕ, Γ ⇒ Δ’, ϕ  (where  Δ’=Δ–{T ⌜ϕ⌝}) and then 
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apply TR on  ϕ  to  obtain ϕ, Γ ⇒ Δ. The same strategy goes through for 
T-outR. For the induction step, we distinguish the cases of T ⌜ϕ⌝ being 
principal or not. If it is principal, the conclusion is immediate. If it is not, 
simply apply the Induction hypothesis to (one of) the previous line(s). ◻

The conservativity of STAT over PA also means that it is much 
weaker than many popular classical theories of truth like KF. In order 
to strengthen our nontransitive theory, we need a looser restriction on 
Cut, which also allows for some applications if the Cut-formula includes 
the truth predicate.

Restricting Cut

Consider a classical, disquotational axiomatic theory of truth S. An 
axiomatic theory of truth is said to be disquotational, if its only axioms 
concerning T are instances of the (uniform) T-schema ϕ ↔ T ⌜ϕ⌝. Since S 
is classical, it has an unrestricted Cut-rule (given a suitable formulation 
in a sequent calculus) in the sense that it includes the Cut rule for all 
formulae ϕ ∈ L. However, in order for it to be consistent, it must lack 
some instances of the (uniform) T-schema. So in a sense its Cut rule 
(and all its other rules) is restricted compared to the naive theory of 
truth. The classical theory does not contain any application of Cut, s.t. 
the Cut-formula was derived using an instance of the T-schema, which 
is not included in S. By eliminating some instances of the T-schema, we 
also eliminate those Cuts which could have been applied after making 
use of those instances of the T-schema. This is not a restriction in terms 
of the language but a proof-theoretic restriction with respect to the 
history of how the premises of a rule are derived.

This approach follows a remark by Ripley, which has (as far as I 
know) never been worked out in detail:

This suggests adding a restricted rule of cut to the target systems. 
Such a rule could be used in a derivation only above truth (...) rules, 
never below them. That is, the premises of the cut would have to be 
derived without use of the truth (...) rules, although any rules at all 
could be freely applied to the conclusion of the cut. (Ripley, 2013b, p. 11)

To see why this observation might be fruitful in blocking the 
paradoxes, let us take a look at a derivation of the empty sequent via 
the Liar paradox. Obtain a typical liar sentence λ via diagonalisation 
s.t. ⇒ λ ↔ ¬T ⌜λ⌝ is provable. By the invertibility of our rules for the 
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conditional and negation (Negri et al., 2001), it holds that the system 
proves the sequents λ, T ⌜λ⌝⇒ and ⇒ λ, T ⌜λ⌝. The empty sequent can 
now be derived as follows:

The derivation up to the sequents λ, T ⌜λ⌝⇒ and ⇒λ, T ⌜λ⌝ can 
be obtained in PAT, i.e. PA formulated in the language including the 
truth predicate. This means that up to this point, the derivation does 
not involve any truth-theoretic principles like T-rules or instances of the 
(uniform) T-schema. After applying TL and TR, we only need to apply 
Cut in order to derive the empty sequent. We will soon show that this 
holds for every derivation of the empty sequent or triviality.

Exploiting this fact we can construct a restricted rule of Cut 
relative to some classical, axiomatic theory of truth S as follows: Cut 
is only applicable if its premises were derived using only rules of S. 
This way we can extract the Cut-rule of S by considering only those 
applications, which could have happened within S itself.
So given S, our nontransitive theory STAT[S] is obtained by closing S 
under TL and TR and replacing its Cut rule by

given that the derivations leading to the Cut-premises only contain rules 
of S (where S is of course the original classical theory before the closure 
under TL and TR). We read STAT[S] as ‘strict-tolerant arithmetical truth 
over S’. Since any classical theory of truth contains PA, STAT[S] will prove 
all sequents of PA as well.

Before considering some particular instances of S, we show some 
basic lemmata about the non-triviality of the resulting systems:

Lemma 2.1.  Let S be a classical, consistent theory of truth. Then  
STAT[S] does not prove the empty sequent.

Proof. Assume for contradiction that STAT[S] proves the empty 
sequent. Since S is consistent and closed under Cut, the derivation 
concluding the empty sequent must involve an application of a T-rule 
not included in S. But the only rule which could eliminate the principal 
formula of this rule would be Cut, which is restricted to formulae 
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derived using only rules of S. So there can be no derivation of the empty 
sequent. ◻

This lemma is of course not enough to ensure that STAT[S]  is non-
trivial, since the theory is not closed under Cut.

Lemma 2.2.  Let S be a classical, consistent theory of truth. Then  
STAT[S] is non-trivial.

Proof. Assume for contradiction that STAT[S] is trivial. Pick 
some arithmetical formula ϕ, s.t. S by itself does not derive ⇒ϕ. So the 
derivation of ⇒ϕ must include an application of a T-rule not included in 
S. However, the principal formula of this T-inference cannot occur in the 
conclusion sequent for the conclusion is arithmetical. But the only rule 
which could eliminate the principal formula of this T-inference would 
be Cut, which is blocked since the derivation must include a T-inference 
not included in S. ◻

Despite its nontriviality, our nontransitive theory is both 
inconsistent and (therefore) ω-inconsistent:

Lemma 2.3.  STAT[S] is inconsistent and ω-inconsistent

Proof. The inconsistency can easily be shown by recreating the 
proof of the Liar above:

The ω-inconsistency can then easily be derived as follows. 
Consider the formula T ⌜λ⌝ ∧ y = y. We can then show that STAT[S] 
proves ¬∀x (T ⌜λ⌝ ∧ x = x) and  T ⌜λ⌝ ∧ n̄   = n̄   for every n ∈ ω:

◻
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Now in order to show how we can easily construct very strong 
nontransitive theories of truth, consider the strongest disquotational 
theory of truth known. (Schindler, 2018; Picollo & Schindler, 2018) 
define the axiomatic theory of truth UTB(Z2) as PAT plus all instances 
of the uniform T-schema  ∀x1,...,xn (T ⌜ϕ(x1,...,xn)⌝↔ϕ(x1,...,xn)), where ϕ 
is a translation of a formula of second-order Arithmetic into our first-
order language containing T (the details of translation do not matter 
here) and the quantifiers of the T-schema are restricted to translated 
formulae.

We can then construct our nontransitive theory STAT[UTB(Z2)] as 
follows. First, we need to give a suitable translation of UTB(Z2) (which is 
typically given as a Hilbert-style calculus) into a sequent calculus. To do 
so, simply consider the theory of naive truth NT, i.e. extending STAT by an 
unrestricted Cut-rule. A sequent calculus for UTB(Z2) is then obtained 
by admitting formulae (not just sentences) as active formulae of TL and 
TR and restricting these rules to translated formulae of second-order 
arithmetic. It can easily be shown that the theory derives all instances 
of the uniform T-schema if formulae with free variables are allowed as 
active formulae of TL and TR.

Our desired nontransitive theory of truth can then be constructed 
as follows. We start with UTB(Z2) and close it under those instances of 
TL and TR which it lacks. This means adding all instances of TL and TR 
s.t. the active formulae are not translated formulae from the language of 
second-order arithmetic. Finally, we replace its Cut rule by

which is only applicable given that the derivations leading up to the 
Cut-premises only contain rules of UTB(Z2). Here we only formulate 
the restriction of Cut by a criterion of the metalanguage. However, it is 
easy to express this property via an indexed sequent calculus. One can 
introduce different indices, which is changed whenever a T-inference 
not contained in S is used. The Cut-rule is then restricted with respect 
to this index in a straightforward way.

It is easy to see that S is always a proper subtheory of STAT[S] 
and so the latter proves everything the former does. Since UTB(Z2)  
is very strong, this makes STAT[UTB(Z2)] very strong as well. Some 
already very strong theories of truth have a proof-theoretic ordinal 
of ϵ0 or even Γ0. But UTB(Z2) goes well beyond that: These theories 
are proof-theoretically weaker than the subsystem of second-order 
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arithmetic with Π1
1-comprehension. But UTB(Z2) relatively interprets 

any subsystem with Πn
1-comprehension for any n ∈ ω! This illustrates 

that we can easily construct very, very strong nontransitive theories of 
truth. In fact, the theory is so strong that there currently is not even a 
notation to capture its proof-theoretic ordinal. The things just said also 
hold for a somewhat weaker theory of truth, namely UTB(Z 

_
2  ) introduced 

in Schindler (2015).
Halbach and Nicolai (2018) and Halbach and Horsten (2006) have 

argued repeatedly in favour of classical over non-classical approaches 
by pointing out that non-classical approaches are very bad in trying to 
recapture arithmetical theorems. The problem is typically that even if 
the non-classical theory recaptures the classical rules for arithmetical 
formulae, one cannot make use of truth-theoretic principles in order to 
prove new arithmetical theorems such as Con(PA).  Halbach and Horsten 
(2006) have shown this as a weakness of a gappy axiomatisation of the 
Kripke construction PKF and Picollo (2020) shows that the same holds 
for attempts to recapture classical rules in the case glutty logics like LP.

The current proposal shows that nontransitive theories fare much 
better with respect to recapturing classical reasoning than ‘ordinary’ 
fully structural but non-classical theories. Restricting the structural 
rule of Cut allows us to formulate the restriction by absorbing the Cut 
rule of a classical theory and blocking it only whenever we apply a T-rule 
which goes beyond that classical theory. This strategy cannot work for 
a non-classical but structural approach. The derivation of the empty 
sequent via the Liar using the inversion principle shows that the only 
rule we need to apply after the T-inference is Cut.

 STAT[S] does not only prove everything which our classical theory 
S proves. It strengthens the theory as it is transparent: it proves ϕ, Γ 
⇒ Δ iff it proves T ⌜ϕ⌝, Γ ⇒ Δ and the same on the right hand side 
of the sequent arrow. Its conditional is also strong enough to capture 
this transparency in the object language by proving all conditionals 
of the form ⇒T ⌜ϕ⌝ ↔ ϕ (and its uniform formulation given function 
symbols for suitable substitution functions). Thus it may be argued that 
the current nontransitive approach combines the best of both worlds: a 
transparent truth-predicate and the proof-theoretic strength of classical 
theories.
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