Publicado 2020-05-01
Palabras clave
- Facultad del lenguaje,
- Operación digital,
- Operación analógica,
- Computación neural
- Language Faculty,
- Digital Operation,
- Analog Operation,
- Neural Computation
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Resumen
Desde la bioloinguistica, ensamble sería una operación digital realizada en el cerebro que, en tanto tal, estaría asociada a principios específicos de la computación neural. En una primera aproximación, la computación digital consiste en el procesamiento de cadenas de dígitos de acuerdo a reglas generales. Sin embargo, los procesos neurales no se desarrollarían de acuerdo a los principios de la computación digital. Estas afirmaciones en conflicto, e.g., la caracterización digital de ensamble y la caracterización no digital del cerebro, llevan al siguiente escenario: o bien ensamble es una operación que no realiza el cerebro, o bien es realizada por el cerebro pero no digitalmente. El propósito de este artículo es evaluar los problemas de estas dos tesis.
Citas
- Al-Mutairi, F. R. (2014). The minimalist program: The nature and plausibility of Chomsky´s biolinguisitics. Cambridge Press.
- Arbib, M. (1983). Brains, machines, and mathematics. Springer.
- Beim Graben, P., Pinotsis, D., Saddy, D., & Potthast, R. (2008). Language processing with dynamic fields. Cognitive Neurodynamics, 2(2), 79-88. https://doi.org/10.1007/s11571-008-9042-4
- Bermúdez, J. L. (2014). Cognitive science: An introduction to the science of the mind. Cambridge University Press.
- Bilgrami, A., & Rovane, C. (2005). Mind, language, and the limits of inquiry. In J. McGilvray (Ed.), The Cambridge Companion to Chomsky (pp. 181-203). Cambridge University Press.
- Boeckx, C. (2009). The nature of merge: Consequences for language, mind and biology. In M. Piattelli-Palmarini, J. Uriagereka & P. Salaburu (Eds.), A dialogue with Noam Chomsky in the Basque Country (pp. 44-57). Oxford University Press.
- Boeckx, C. (2012). The I-languages mosaic. In C. Boeckx, M. C. Horno-Cheliz & J.L. Mendivil-Giro (Eds.), Language from a biological point of view: Current issues on biolinguistics (pp. 23-51). Cambridge Scholars Publishing.
- Boeckx, C. (2013). Biolinguistics: Facts, fiction, and forecast. Biolinguistics, 7, 316-328.
- Boeckx, C. (2013). Merge: Biolinguistic considerations. English Linguistics, 30, 463-484.
- Boeckx, C., & Benítez-Burraco, A. (2014). The shape of language-ready brain. Frontiers in Psychology, 5, 282. https://doi.org/10.3389/fpsyg.2014.00282
- Boeckx, C., & Grohmann, K. (2007). The biolinguistics manifesto. Biolinguistics, 1, 1-8.
- Boeckx, C., & Piattelli-Palmarini, M. (2005). Language as a natural object: Linguistics as a natural science. The Linguistic Review, 22, 467-471.
- Boolos, G. (1971). The iterative conception of set. The Journal of Philosophy, 68(8), 215-231. https://doi.org/10.2307/2025204
- Carandini, M., & Heeger, D. J. (2012). Normalization as a canonical neural computation. Nature Reviews Neuroscience, 13, 51-62.
- Chomsky, N. (1995). The minimalist program. The MIT Press.
- Chomsky, N. (2002). On nature and language. Cambridge University Press.
- Chomsky, N. (2007). Approaching UG from below. In U. Sauerland & H.-M. Gärtner (Eds.), Interfaces + recursion = language?: Chomsky’s minimalism and the view from semantics (pp. 1-29). Mouton de Gruyter.
- Chomsky, N. (2008). On phases. In R. Freidin, C. P. Otero, & M. L. Zubizarreta (Eds.), Foundational issues of philosophical studies: Essays in honor of Jean-Roger Vergnaud (pp. 133-166). The MIT Press. https://10.7551/mitpress/9780262062787.003.0007
- Chomsky, N. (2014). Minimal recursion: Exploring the prospects. In T. Roeper & M. Speas (Eds.), Recursion: Complexity in cognition. Springer. https://doi.org/10.1007/978-3-319-05086-7_1
- Copeland, B. J. (1996). What is Computation? Synthese, 3, 335-359.
- Craver, C. (2007). Explaining the brain: Mechanisms and the mosaic unity of neuroscience. Oxford University Press.
- De Mol, L. (2018). Turing Machines. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Winter 2019 Edition). https://plato.stanford.edu/archives/win2019/entries/turing-machine/
- Fodor, J. (1987). Psychosemantics: The problem of meaning in the philosophy of mind. The MIT Press.
- Fodor, J.. & Pylyshyn, Z. W. (1995). Connectionism and cognitive architecture: A critical analysis. In C. Macdonald & G. Macdonald (Eds.), Connectionism: Debates on psychological explanation, vol. 2; Blackwell.
- Fodor, J. (1994). The elm and the expert. The MIT Press.
- Fodor, J. (2000). The mind doesn´t work that way. The MIT Press.
- Fujita, K. (2017). On the parallel evolution of syntax and lexicon: A merge-only view. Journal of Neurolinguistics, 43, 178-192.
- Fukui, N. (2011). Merge and bare phrase sturcture. In C. Boeckx (Ed.), The Oxford handbook of linguistic minimalism. Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199549368.013.0004
- Gerard, R. W. (1951). Some of the problems concerning digital notions in the central nervous system. In H. Foerster, M. Mead & H. L. Teuber (Eds.), Cybernetics: Circular causal and feedback mechanisms in biological and social systems. Transactions of the Seventh Conference, March 23-24, 1951 (pp. 11-574). Macy Foundation.
- Getz, R., & Moeckel, B. (1996). Understanding and eliminating EMI in microcontroller applications. National Semiconductor Corporation, Application Note 1050.
- González-Villar, A. J., Samartin-Veiga, N., Arias, M. & Carrillo-de-la-Peña, M. T. (2017). Increased neural noise and impaired brain synchronization in fibromyalgia patients during cognitive interference. Scientific Reports, 7(1), 1-8.
- Haugeland, J. (1981). Analog and Analog. Philosophical Topics, 12, 213-225.
- Haugeland, J. (1989). AI: The very idea. The MIT Press.
- Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500-544.
- Hornstein, N., Nunes, J., & Grohmann K. (2005). Understanding minimalism: An introduction to minimalist syntax. Cambridge University Press
- Hulst, H. G. van der (2010). Re recursion. In H. van der Hulst (Ed.), Recursion and human language (pp. 15-53). Mouton de Gruyter.
- Jackendoff, R. (2011). What is the human language faculty? Two views. Language, 87, 586-624.
- Kass, R. E. (2018). Computational neuroscience: Mathematical and statistical perspectives. Annual Review of Statistics and Its Application, 5, 183-214.
- King, D. (1996). Is the human mind a Turing machine? Synthese, 108, 379-389.
- Kleene, S. C. (1952). Recursive predicates and quantifiers. In M. Davis (Ed.) (2004) The undecidable: Basic papers on undecidable propositions, unsolvable problems and computable functions (pp. 254-286). Dover Publications.
- Le Bon-Jego, M., & Yuste, R. (2007). Persistently active, pacemaker-like neurons in neocortex. Frontiers in Neuroscience, 1, 123–129.
- Lobina, D. (2011). A running back and forth: A review of recursion and human language. Biolinguistics, 5, 151-169.
- Lobina, D. (2014). Probing Recursion. Cognitive processing, 15(4), 435-450.
- Lobina, D. (2017). Recursion: A Computational investigation into the representation and procesing of language. Oxford University Press.
- Lorenzo, G. (2013). Biolingüística: La nueva síntesis. Open Libra.
- Machamer, P., Darden, L., & Craver, C. (2000). Thinking about Mechanisms. Philosophy of Science, 67, 1-25.
- Maley, C. J. (2011). Analog and digital, continuous and discrete. Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition, 155, 117-131.
- Marantz, A. (1995). The minimalist program. In G. Webelhuth (Ed.) Government and Binding Theory and the Minimalist Program: Principles and Parameters in Syntactic Theory (pp. 351-382). Blackwell.
- Marr, D. (1982). Vision. Freeman Press.
- McCulloch, W. S., & Pitts, W. H. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115-133.
- Mochizuki, Y., & Shinomoto, S. (2014). Analog and digital codes in the brain. Physical Review E, 89, 02275-1-02275-8.
- Newell, A. (1980). Physical symbol systems. Cognitive Science, 4(2), 135-183.
- O’Reilly, R. (2006). Biological based computational models of high-level cognition. Science: New Series, 314, 91-94.
- Piccinini, G. (2012). Computationalism. In E. Margolis, R. Samuels & S. P. Stich (Eds.), The Oxford Handbook of Philosophy of Cognitite Science. Oxford University Press. https://doi.org/10.1093/oxfordhb/9780195309799.013.0010
- Piccinini, G. (2006). Computational explanation in neuroscience. Synthese, 153, 343-353.
- Piccinini, G. (2007). Some neural networks compute, others don’t. Neural Networks, 21, 311-321.
- Piccinini, G. (2008). Computers. Pacific Philosophical Quarterly, 89, 32-73.
- Piccinini, G. (2010). The resilience of computationalism. Philosophy of Science, 77, 852-861.
- Piccinini, G., & Bahar, S. (2013). Neural computation and the computational theory of cognition. Cognitive Science, 37(3), 453-488.
- Piccinini, G., & Scarantino, A. (2010). Computation vs. information processing: Why their differences matters to cognitive science. Studies in History and Philosophy of Science, 41, 237-246.
- Poeppel, D., & Embick, D. (2005). Defining the relation between linguistics and neuroscience. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones, 1 (pp. 103-118). Lawrence Erlbaum Associates.
- Pour-El, M. B. (1974). Abstract computability and its relation to the general purpose analog computer: Some connections between logic, differential equations and analog computers. Transactions of the American Mathematical Society, 199, 1-28.
- Raichle, M. E., & Mintun, M. A. (2006). Brain work and brain imaging. Annual Review of Neuroscience, 29, 449–476.
- Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain, Psychological Review, 65(6), 386-408.
- Rubel, L. A. (1985). The brain as an analog computer. Journal of theoretical neurobiology, 4(2), 73-81.
- Rubel, L. (1989). Digital simulation of analog computation and Church´s thesis. The Journal of Symbolic Logic, 54 (3), 1011-1017.
- Sarpeshkar, R. (1998). Analog versus digital: Extrapolating from electronics to neurobiology. Neural computation, 10, 1601-1638.
- Schlesewsky, M., & Bornkessel-Schlesewsky, B. (2013). Computational primitive in syntax and possible brain correlates. In C. Boeckx & K. K. Grohmann (Eds.), The Cambridge Handbook of Biolinguistics (pp. 257-282). Cambridge University Press.
- Schneider, S. (2011). The language of thought: A new philosophical direction. The MIT Press.
- Spivey, M. (2007). The continuity of mind. Oxford University Press.
- Turing, A. M. (1936). On computable numbers, with an application to the entscheidungsproblem. Proceedings of the London Mathematical Society, 42(1), 230–265.
- Turing, A. M. (1950). Computing machinery and intelligence. Mind, 236: 433-460.
- Weiskopf, D. (2011). The functional unity of special science kinds. The British Journal for the Philosophy of Science, 62(2), 233-258.
- Wetzel, L. (2006). Types and tokens. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Fall 2018 ed.). https://plato.stanford.edu/archives/fall2018/entries/types-tokens/
- Yang, Ch. (2010). Three factors in language variation. Lingua, 120, 1160–1177.
- Yusa, N. (2016). Syntax in the brain. In K. Fujita & C. Boeckx (Eds.), Advances in biolinguistics: The human language faculty and its biological basis (pp. 217-229). Routledge.
- Zaccarella, E., & Friederici, D. G. (2015). Merge in the human brain: A sub-region based functional investigation in the left pars opercularis. Frontiers in psychology, 6, 1818.