Publicado 2025-12-30
Palabras clave
- Metafísica científica,
- Mecánica cuántica,
- No-localidad,
- Realismo científico,
- Instrumentalismo
- Metaphysics of Science,
- Quantum Mechanics,
- Non-Locality,
- Scientific Realism,
- Instrumentalism

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Resumen
A lo largo de la historia, las ciencias fácticas tuvieron como objetivo tanto el control como la comprensión de los fenómenos naturales. No obstante, durante muchos años (y persistiendo en cierta medida hasta la actualidad), esta fructífera simbiosis fue anulada por una postura “instrumentalista”, que considera todo intento de comprender los fenómenos observables por medio de una imagen del mundo subyacente (inobservable) como un mero “relato” metafísico. Relato que resultaría innecesario —en el mejor de los casos— o incluso dañino para la empresa científica. El presente artículo pretende demostrar que, más allá de los compromisos que desde la filosofía se decida asumir —o no— con el realismo, algunos episodios de la historia de la ciencia muestran que la actitud realista en el nivel científico puede ser parte importante de los factores que motorizan descubrimientos. Para ello, nos centraremos en un caso paradigmático de la mecánica cuántica, la postulación y posterior aceptación de uno de los fenómenos más revolucionarios de la segunda mitad del siglo pasado, las “correlaciones no locales”. Sostendremos que fue la actitud realista de científicos como Einstein, Bohm y Bell —entre otros— la que impulsó las investigaciones que derivaron finalmente en dicho descubrimiento, investigaciones que no encontraron motivación alguna desde una mirada antirrealista de la ciencia.
Citas
- Aharonov, Y., & Bohm, D. (1957). Discussion of experimental proof for the paradox of Einstein, Rosen, and Podolsky. Physical Review, 108(4), 1070-1076. https://doi.org/10.1103/PhysRev.108.1070
- Albert, D. (1996). Elementary quantum metaphysics. En J. Cushing, A. Fine, & S. Goldstein (Ed.), Bohmian mechanics and quantum theory: An appraisal (pp. 277-284). Kluwer Academic. https://doi.org/10.1007/978-94-015-8715-0_19
- Andreoletti, G., & Vervoort, L. (2022). Superdeterminism: A reappraisal. Synthese, 200(5), 1-20. http://doi.org/10.1007/s11229-022-03832-6
- Aspect, A., Grangier, P., & Roger G. (1982). Experimental realization of Einstein-Podolski-Rosen-Bohm Gedankenexperiment: A new violation of Bell’s inequalities. Physical Review Letters, 49(2), 91-94. https://doi.org/10.1103/PhysRevLett.49.91
- Baas, A., & Le Bihan, B. (2023). What does the world look like according to superdeterminism? The British Journal for the Philosophy of Science, 74(3), 555-572. https://doi.org/10.1086/714815
- Bacciagaluppi, G., & Valentini, A. (2009). Quantum theory at the crossroads: Reconsidering the 1927 Solvay Conference. Cambridge University Press. https://doi.org/10.48550/arXiv.quant-ph/0609184
- Bell, J. (1964). On the Einstein Podolsky Rosen paradox. Physics, 1, 195-200. https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
- Bell, J. (1966). On the problem of hidden variables in quantum mechanics. Reviews of Modern Physics, 38(3), 447-468. https://doi.org/10.1103/RevModPhys.38.447
- Bell, J. (1987). Speakable and unspeakable in quantum mechanics. Cambridge University Press. https://doi.org/10.1017/CBO9780511 815676
- Beller, M. (1996). Bohm and the “inevitability” of acausality. En R. Cohen (Ed.), Bohmian mechanics and quantum theory: An appraisal (pp. 211-230). Kluwer Academic. https://doi.org/10.1007/978-94-015-8715-0
- Bohm, D. (1951). Quantum theory. Prentice-Hall.
- Bohm, D. (1952). A suggested interpretation of the quantum theory in terms of ‘hidden’ variables (partes I y II). Physical Review, 85(2), 166-179 y 180-193. https://doi.org/10.1103/PhysRev.85.166
- Bohr, N. (1935). Can quantum mechanical description of reality be considered complete? Physical Review, 48, 696-702. https://doi.org/10.1103/PhysRev.48.696
- Bohr, N. (1961). Atomic theory and the description of nature. Cambridge University Press. https://doi.org/10.1119/1.1942160
- Borge, B. (2015). Realismo científico hoy: A 40 años de la formulación del Argumento del No Milagro. Acta Scientiarum. Human and Social Sciencies, 37(2), 221-233. https://doi.org/10.4025/actascihumansoc.v37i2.26933
- Bricmont, J. (2016). Making sense of quantum mechanics. Springer. https://doi.org/10.1007/978-3-319-25889-8
- Chakravartty, A. (2020). Acerca de la relación entre el realismo científico y la metafísica científica. En B. Borge & N. Gentile (Eds.), La ciencia y el mundo inobservable: Discusiones contemporáneas en torno al realismo científico. Eudeba.
- Corry, R. (2015). Retrocausal models for EPR. Studies in History and Philosophy of Modern Physics, 49, 1-9. https://doi.org/10.1016/j.shpsb.2014.11.001
- Costa de Beauregard, O. (1976). Time symmetry and interpretation of quantum mechanics. Foundations of Physics, 6(5), 539-559. https://doi.org/10.1007/BF00715107
- Cramer, J. (1980). Generalized absorber theory and the Einstein-Podolsky-Rosen paradox. Physical Review D, 22(2), 362–376. https://doi.org/10.1103/PhysRevD.22.362
- Dieks, D. (2017). Von Neumann’s impossibility proof: Mathematics in the service of rhetorics. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 60, 136-148. https://doi.org/10.1016/j.shpsb.2017.01.001
- Dowe, P. (1997). A defense of backwards in time causation models in quantum mechanics. Synthese, 112(2), 233-246. https://doi.org/10.1023/a:1004932911141
- Einstein, A., Podolsky, B. y Rosen, N. (1935). Can quantum mechanical description of reality be considered complete? Physical Review, 47, 777-780. https://doi.org/10.1103/PhysRev.47.777
- Esfeld, M. (2004). Quantum entanglement and a metaphysics of relations. Elsevier, 35(4), 601-617. https://doi.org/10.1016/j.shpsb.2004.04.008
- Friedman, M. (1983). Foundations of space-time theories, relativistic physics and philosophy of science. Princeton University Press.
- Giustina, M., Versteegh, M., Wengerowsky, S., Handsteiner, J., Hochrainer, A., Phelan, K., Steinlechner, F., Kofler, J., Larsson, J., Abellán, C., Amaya, W., Pruneri, V., Mitchell, M., Beyer, J., Gerrits, T., Lita, A., Shalm, L., Nam, S., Scheidl, T., … Zeilinger, A. (2015). Significant-loophole-free test of Bell’s theorem with entangled photons. Physical Review Letters, 115, 250401. https://doi.org/10.1103/PhysRevLett.115.250401
- Healey, H. (1994). Nonseparable processes explanation and causal explanation. Studies in History and Philosophy of Science, 25(3), 337-374. https://doi.org/10.1016/0039-3681(94)90057-4
- Heisenberg, W. (1927). Ueber den anschaulichen Inhalt der quanten theoretischen Kinematik and Mechanik. Zeitschrift für Physik, 43, 172-198. https://doi.org/10.1007/BF01397280
- Heinsenberg, W. (1959). Física y filosofía. La Isla.
- Heisenberg, W. (1967). Quantum theory and its interpretation. En S. Rosental (Ed.), Niels Bohr: His life and work as seen by his friends (pp. 94-108). North-Holland.
- Hensen, B., Bernien, H., Dréau, A., Reiserer, A., Kalb, N., Blok, M., Ruitenberg, J., Vermeulen, R., Schouten, R., Abellán, C., Amaya, W., Pruneri, V., Mitchell, M., Markham, M., Twitchen, D., Elkouss, D., Wehner, S., Taminiau, T., & Hanson, R. (2015). Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature, 526(7575), 682-686. https://doi.org/10.1038/nature15759
- Hermann, A. (1968). Carta 53 del 09/11/1927. En A. Hermann (Ed.), Albert Einstein / Arnold Sommerfeld Briefwechsel (p. 112). Schwabe & Co.
- Holland, P. (1993). The quantum theory of motion: An account of the De Broglie-Bohm causal interpretation of quantum mechanics. Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511 622687
- Hossenfelder, S., & Palmer, T. (2020). Rethinking superdeterminism. Frontiers in Physics, 8(139), 1-24. https://doi.org/10.48550/arXiv. 1912.06462
- Howard, D. (1989). Holism, Separability, and the metaphysical implications of the Bell experiments. En J. Cushing & E. McMullin (Eds.), Philosophical consequences of quantum theory: Reflections on Bell’s theorem (pp. 224-253). University of Notre Dame Press.
- Marage, P., & Wallenborn, G. (1999). The Solvay councils and the birth of modern physics. Springer. https://doi.org/10.2307/3621708
- Maudlin, T. (2011). Quantum non-locality and relativity: Metaphysical intimations of modern physics. Blackwell. https://doi.org/10.10 02/9781444396973
- Maudlin, T. (2014). What Bell did. Journal of Physics A: Mathematical and Theoretical, 47(2), 424010. https://doi.org/10.48550/arXiv.1408.1826
- Mermin, D. (1989). What’s wrong with this pillow? Physics Today, 42(4), 9-11. https://doi.org/10.1063/1.2810963
- Miller, D. (1996). Realism and time symmetry in quantum mechanics. Physics Letters A, 222(1/2), 31-36. https://doi.org/10.1016/0375-9601(96)00620-2
- Morganti, M. (2009). A new look at relational holism in quantum mechanics. Philosophy of Science, 76, 1027-1038. https://doi.org/10.1086/605809
- Norsen, T. (2017). Foundations of quantum mechanics: An exploration of the physical meaning of quantum theory. Springer. https://doi.org/10.1007/978-3-319-65867-4
- Placek, T. (2004). Quantum state holism: A case for holistic causation. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 35(4), 671-692. https://doi.org/10.1016/j.shpsb.2004.06.001
- Price, H. (1997). Time’s arrow and Archimedes’ point: New directions for the physics of time. Oxford University Press. https://doi.org/10.2307/2653578
- Shalm, L., Meyer-Scott, E., Christensen, B., Bierhorst, P., Wayne, M., Stevens, M., Gerrits, T., Glancy, S., Hamel, D., Allman, M., Coakley, K., Dyer, S., Hodge, C., Lita, A., Verma, V., Lambrocco, C., Tortorici, E., Migdall, A., Zhang, Y., & Nam, S. (2015). Strong loophole-free test of local realism. Physical Review Letters, 115(250402). https://doi.org/10.1103/PhysRevLett.115.250402
- Sutherland, R. (1983). Bell’s theorem and backwards-in-time causality. International Journal of Theoretical Physics, 22(4), 377-384. https://doi.org/10.1007/BF02082904
- van Fraassen, B. C. (1980). The scientific image. Oxford University Press.
- von Neumann, J. (1932). Mathematische grundlagen der quantenmechanik. Springer. https://doi.org/10.1007/978-3-322-94058-2_6
- Wharton, K. (2007). Time-symmetric quantum mechanics. Foundations of Physics, 37(1), 159-168. https://doi.org/10.1007/s10701-006-9089-1
- Wick, D. (1998). The infamous boundary. Copernicus. https://doi.org/10.1007/978-1-4612-5361-7
