Vol. 41 Núm. 2 (2021)
Sección temática

Précis de Uncut

David Ripley
Philosophy Department, Monash University, Australia

Publicado 2021-11-01

Palabras clave

  • Paradojas,
  • Verdad,
  • Vaguedad,
  • Validez,
  • Significado
  • Paradox,
  • Truth,
  • Vagueness,
  • Validity,
  • Meaning


Uncut es un libro sobre dos tipos de paradojas: paradojas que involucran la noción verdad y otros conceptos similares, como la paradoja del mentiroso, y las paradojas de la vaguedad. Hay muchas formas de entender estas paradojas y son muchos los enigmas que estas generan. Uncut ignora gran parte de esto para concentrarse en un único asunto: ¿tienen nuestras palabras el significado que aparentan tener? Y si es así, ¿cómo es esto posible? Sugiero que nuestras palabras tienen el significado que aparentan tener y sin embargo nuestro lenguaje no se ve afectado por las paradojas. Para mostrar cómo esto es posible, desarrollo una teoría distintiva del significado.


  1. Barrio, E., Rosenblatt, L., & Tajer; D. (2016). Capturing naive validity in the cut-free approach. Synthese. https://doi.org/10.1007/s11229-016-1199-5
  2. Beall, J. (2009). Spandrels of truth. Oxford University Press.
  3. Beall, J., & Murzi, J. (2013). Two flavors of curry’s paradox. Journal of Philosophy, 110(3), 143-165.
  4. Beall, J., & van Fraassen, B. C. (2003). Possibilities and paradox: An introduction to modal and many-valued logic. Oxford University Press.
  5. Bocheński, J. M. (1937). Notes historiques sur les propositions modales. Revue Des Sciences Philosophiques et Théologiques, 26, 673-692.
  6. Bocheński, J. M. (1938). De Consequentiis Scholasticorum Earumque Origine. Angelicum, 15, 92-109.
  7. Brady, R. T. (1971). The consistency of the axioms of abstraction and extensionality in a three-valued logic. Notre Dame Journal of Formal Logic, 12(4), 447-453.
  8. Brandom, R. (1994). Making it explicit. Harvard University Press.
  9. Cobreros, P., Égré, P., Ripley, D., & van Rooij, R. (2012). Tolerant, Classical, Strict. Journal of Philosophical Logic, 41(2), 347-385.
  10. Cobreros, P., Égré, P., Ripley, D., & van Rooij, R. (2017). Tolerant reasoning: Nontransitive or Nonmonotonic? Synthese. https://doi.org/10.1007/s11229-017-1584-8
  11. Field, H. (2008). Saving truth from paradox. Oxford University Press.
  12. Girard, J.-Y. (1987). Proof theory and logical complexity (vol. I). Bibliopolis.
  13. Kripke, S. (1975). Outline of a theory of truth. Journal of Philosophy, 72(19), 690-716.
  14. Leitgeb, H. (1999). Truth and the liar in De Morgan-valued models. Notre Dame Journal of Formal Logic, 40(4), 496-514.
  15. MacFarlane, J. (2004). In what sense (if any) is logic normative for thought? https://johnmacfarlane.net/normativity_of_logic.pdf
  16. Martin, R. L., & Woodruff, P. W. (1976). On representing ‘true-in-L’ in L. In A. Kasher (Ed.), Language in Focus: Foundations, Methods and Systems (pp. 113-117). Reidel.
  17. Mates, B. (1965). Pseudo-Scotus on the soundness of consequentiae. In A.-T. Tymieniecka (Ed.), Contributions to logic and methodology in honor of J. M. Bocheński (pp. 132-141). North-Holland.
  18. Meyer, R., & Sylvan, R. (1977). Extensional Reduction II. Manuscript. Partially published in R. Brady (Ed.) (2003), Relevant logics and their rivals, vol. 2. Ashgate Publishing.
  19. Negri, S., & von Plato, J. (1998). Cut elimination in the presence of axioms. The Bulletin of Symbolic Logic, 4(4), 418-435.
  20. Price, H. (1990). Why ‘Not’? Mind, 99(394), 221-238.
  21. Priest, G. (2008). An introduction to non-classical logic: From if to is (2nd ed). Cambridge University Press.
  22. Priest, G. (2010). Hopes fade for saving truth. Philosophy, 85(1), 109-140.
  23. Priest, G., & Routley, R. (1982). Lessons from Pseudo-Scotus. Philosophical Studies, 42(2), 189-199.
  24. Read, S. (1979). Self-reference and validity. Synthese, 42(2), 265-274.
  25. Read, S. (2001). Self-reference and validity revisited. In M. Yrjönsuuri (Ed.), Medieval Formal Logic (183-196). Springer.
  26. Restall, G. (2005). Multiple conclusions. In P. Hájek, L. Valdés-Villanueva & D. Westerståhl (Eds.), Logic, methodology, and philosophy of science: Proceedings of the Twelfth International Congress (pp. 189-205). Kings’ College Publications.
  27. Restall, G. (2008). Assertion, denial, commitment, entitlement, and incompatibility (and some consequence). Studies in Logic, 1(1), 26-36.
  28. Restall, G. (2009). Truth values and proof theory. Studia Logica, 92(2), 241-264.
  29. Restall, G. (2013). Assertion, denial, and non-classical theories. In K. Tanaka, F. Berto, E. Mares & F. Paoli (Eds.), Paraconsistency: Logic and applications (pp. 81-100). Springer.
  30. Ripley, D. (2013a). Paradoxes and failures of cut. Australasian Journal of Philosophy, 91(1), 139-164.
  31. Ripley, D. (2013b). Revising up: Strengthening classical logic in the face of paradox. Philosophers’ Imprint, 13(5), 1-13.
  32. Ripley, D. (2015a). Anything Goes. Topoi, 34(1), 25-36.
  33. Ripley, D. (2015b). Comparing substructural theories of truth. Ergo, 2(13), 299-328.
  34. Ripley, D. (2017a). Bilateralism, coherence, warrant. In F. Moltmann & M. Textor (Eds.), Act-based conceptions of propositional content: Contemporary and historical perspectives (pp. 307-324). Oxford University Press.
  35. Ripley, D. (2017b). On the ‘transitivity’ of consequence relations. Journal of Logic and Computation, 28(2), 433-450.
  36. Shapiro, L. (2011). Deflating logical consequence. Philosophical Quarterly, 61(243), 320-342.
  37. Shapiro, L. (2013). Validity curry strengthened. Thought, 2(2), 100-107.
  38. Shapiro, L. (2016). The very idea of a substructural approach to paradox. Synthese, 1-20. https://doi.org/10.1007/s11229-016-1230-x.
  39. Skolem, T. (1960). A set theory based on a certain three-valued logic. Mathematica Scandinavica, 8(1), 127-136.
  40. Skolem, T. (1963). Studies on the axiom of comprehension. Notre Dame Journal of Formal Logic, 4(3), 162-170.
  41. Zardini, E. (2011). Truth without contra(di)ction. Review of Symbolic Logic, 4(4), 498-535.
  42. Zardini, E. (2013). Naive logical properties and structural properties. Journal of Philosophy, 110(11), 633-644.
  43. Zardini, E. (2014). Naive truth and naive logical properties. Review of Symbolic Logic, 7(2), 351-384.