Vol. 41 No. 2 (2021)
Thematic section

Précis of Uncut

David Ripley
Philosophy Department, Monash University, Australia

Published 2021-11-01

Keywords

  • Paradox,
  • Truth,
  • Vagueness,
  • Validity,
  • Meaning
  • Paradojas,
  • Verdad,
  • Vaguedad,
  • Validez,
  • Significado

Abstract

Uncut is a book about two kinds of paradoxes: paradoxes involving truth and its relatives, like the liar paradox, and paradoxes involving vagueness. There are lots of ways to look at these paradoxes, and lots of puzzles generated by them, and Uncut ignores most of this variety to focus on a single issue. That issue: do our words mean what they seem to mean, and if so, how can this be? I claim that our words do mean what they seem to, and yet our language is not undermined by paradox. By developing a distinctive theory of meaning, I show how this can be.

References

  1. Barrio, E., Rosenblatt, L., & Tajer; D. (2016). Capturing naive validity in the cut-free approach. Synthese. https://doi.org/10.1007/s11229-016-1199-5
  2. Beall, J. (2009). Spandrels of truth. Oxford University Press.
  3. Beall, J., & Murzi, J. (2013). Two flavors of curry’s paradox. Journal of Philosophy, 110(3), 143-165.
  4. Beall, J., & van Fraassen, B. C. (2003). Possibilities and paradox: An introduction to modal and many-valued logic. Oxford University Press.
  5. Bocheński, J. M. (1937). Notes historiques sur les propositions modales. Revue Des Sciences Philosophiques et Théologiques, 26, 673-692.
  6. Bocheński, J. M. (1938). De Consequentiis Scholasticorum Earumque Origine. Angelicum, 15, 92-109.
  7. Brady, R. T. (1971). The consistency of the axioms of abstraction and extensionality in a three-valued logic. Notre Dame Journal of Formal Logic, 12(4), 447-453.
  8. Brandom, R. (1994). Making it explicit. Harvard University Press.
  9. Cobreros, P., Égré, P., Ripley, D., & van Rooij, R. (2012). Tolerant, Classical, Strict. Journal of Philosophical Logic, 41(2), 347-385.
  10. Cobreros, P., Égré, P., Ripley, D., & van Rooij, R. (2017). Tolerant reasoning: Nontransitive or Nonmonotonic? Synthese. https://doi.org/10.1007/s11229-017-1584-8
  11. Field, H. (2008). Saving truth from paradox. Oxford University Press.
  12. Girard, J.-Y. (1987). Proof theory and logical complexity (vol. I). Bibliopolis.
  13. Kripke, S. (1975). Outline of a theory of truth. Journal of Philosophy, 72(19), 690-716.
  14. Leitgeb, H. (1999). Truth and the liar in De Morgan-valued models. Notre Dame Journal of Formal Logic, 40(4), 496-514.
  15. MacFarlane, J. (2004). In what sense (if any) is logic normative for thought? https://johnmacfarlane.net/normativity_of_logic.pdf
  16. Martin, R. L., & Woodruff, P. W. (1976). On representing ‘true-in-L’ in L. In A. Kasher (Ed.), Language in Focus: Foundations, Methods and Systems (pp. 113-117). Reidel.
  17. Mates, B. (1965). Pseudo-Scotus on the soundness of consequentiae. In A.-T. Tymieniecka (Ed.), Contributions to logic and methodology in honor of J. M. Bocheński (pp. 132-141). North-Holland.
  18. Meyer, R., & Sylvan, R. (1977). Extensional Reduction II. Manuscript. Partially published in R. Brady (Ed.) (2003), Relevant logics and their rivals, vol. 2. Ashgate Publishing.
  19. Negri, S., & von Plato, J. (1998). Cut elimination in the presence of axioms. The Bulletin of Symbolic Logic, 4(4), 418-435.
  20. Price, H. (1990). Why ‘Not’? Mind, 99(394), 221-238.
  21. Priest, G. (2008). An introduction to non-classical logic: From if to is (2nd ed). Cambridge University Press.
  22. Priest, G. (2010). Hopes fade for saving truth. Philosophy, 85(1), 109-140.
  23. Priest, G., & Routley, R. (1982). Lessons from Pseudo-Scotus. Philosophical Studies, 42(2), 189-199.
  24. Read, S. (1979). Self-reference and validity. Synthese, 42(2), 265-274.
  25. Read, S. (2001). Self-reference and validity revisited. In M. Yrjönsuuri (Ed.), Medieval Formal Logic (183-196). Springer.
  26. Restall, G. (2005). Multiple conclusions. In P. Hájek, L. Valdés-Villanueva & D. Westerståhl (Eds.), Logic, methodology, and philosophy of science: Proceedings of the Twelfth International Congress (pp. 189-205). Kings’ College Publications.
  27. Restall, G. (2008). Assertion, denial, commitment, entitlement, and incompatibility (and some consequence). Studies in Logic, 1(1), 26-36.
  28. Restall, G. (2009). Truth values and proof theory. Studia Logica, 92(2), 241-264.
  29. Restall, G. (2013). Assertion, denial, and non-classical theories. In K. Tanaka, F. Berto, E. Mares & F. Paoli (Eds.), Paraconsistency: Logic and applications (pp. 81-100). Springer.
  30. Ripley, D. (2013a). Paradoxes and failures of cut. Australasian Journal of Philosophy, 91(1), 139-164.
  31. Ripley, D. (2013b). Revising up: Strengthening classical logic in the face of paradox. Philosophers’ Imprint, 13(5), 1-13.
  32. Ripley, D. (2015a). Anything Goes. Topoi, 34(1), 25-36.
  33. Ripley, D. (2015b). Comparing substructural theories of truth. Ergo, 2(13), 299-328.
  34. Ripley, D. (2017a). Bilateralism, coherence, warrant. In F. Moltmann & M. Textor (Eds.), Act-based conceptions of propositional content: Contemporary and historical perspectives (pp. 307-324). Oxford University Press.
  35. Ripley, D. (2017b). On the ‘transitivity’ of consequence relations. Journal of Logic and Computation, 28(2), 433-450.
  36. Shapiro, L. (2011). Deflating logical consequence. Philosophical Quarterly, 61(243), 320-342.
  37. Shapiro, L. (2013). Validity curry strengthened. Thought, 2(2), 100-107.
  38. Shapiro, L. (2016). The very idea of a substructural approach to paradox. Synthese, 1-20. https://doi.org/10.1007/s11229-016-1230-x.
  39. Skolem, T. (1960). A set theory based on a certain three-valued logic. Mathematica Scandinavica, 8(1), 127-136.
  40. Skolem, T. (1963). Studies on the axiom of comprehension. Notre Dame Journal of Formal Logic, 4(3), 162-170.
  41. Zardini, E. (2011). Truth without contra(di)ction. Review of Symbolic Logic, 4(4), 498-535.
  42. Zardini, E. (2013). Naive logical properties and structural properties. Journal of Philosophy, 110(11), 633-644.
  43. Zardini, E. (2014). Naive truth and naive logical properties. Review of Symbolic Logic, 7(2), 351-384.