Próxima aparición
Sección temática

Acerca de una interpretación Bohmiana estructural sin fundamentalidad respecto al espacio

Jorge Manero
Instituto de Investigaciones Filosóficas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
Biografía

Publicado 2026-01-07

Palabras clave

  • Metafísica de la mecánica cuántica,
  • Teoría Bohmiana,
  • Realismo estructural,
  • Subdeterminación,
  • Teoría de grupos de Lie
  • Metaphysics of Quantum Mechanics,
  • Bohm’s Theory,
  • Structural Realism,
  • Underdetermination,
  • Lie Group Theory

Resumen

En los últimos años se ha desarrollado un polémico debate respecto a la elección entre las muchas interpretaciones de la mecánica cuántica disponibles en la literatura. Con base en ciertos criterios realistas, este debate se ha abordado en el contexto de la elección entre dos visiones opuestas sobre el espacio matemático en el que vive la ontología fundamental de esta teoría. En efecto, varios académicos han defendido una visión en la que esta ontología vive en un espacio abstracto de alta dimensión, mientras que otros abogan por una visión tridimensional, según la cual la ontología vive en el espacio físico de nuestra experiencia cotidiana. En esta contribución, evaluaré críticamente la posibilidad de resolver la subdeterminación resultante entre la visión tridimensional y la de alta dimensión en el contexto de una teoría cuántica particular: el enfoque Bohmiano. Al hacerlo, seguiré dos estrategias: en primer lugar, socavaré la suposición de que un conjunto de virtudes teóricas o metafísicas bloquea el problema de la subdeterminación asociado con el espacio matemático en el que vive la ontología bohmiana fundamental; y en segundo lugar, propondré una interpretación Bohmiana estructural mediante el uso de simetrías dinámicas (grupos de Lie simplécticos), según la cual la distinción entre el espacio tridimensional y el de alta dimensión es solo aparente, ya que ambos espacios dependen fundamentalmente de la misma estructura dinámica.

Citas

  1. Acuña, P., & Dieks, D. (2014). Another look at empirical equivalence and underdetermination of theory choice. European Journal for Philosophy of Science, 4(2), 153-180.
  2. Albert, D. (1996). Elementary quantum metaphysics. In J. Cushing, A. Fine, & S. Goldstein (Eds.), Bohmian mechanics and quantum theory: An appraisal (pp. 277-284). Springer.
  3. Albert, D. (2013). Wave function realism. In A. Ney & D. Albert (Eds.), The wave function: Essays on the metaphysics of quantum mechanics (pp. 52-57). Oxford University Press.
  4. Albert, D. (2015). After physics. Harvard University Press.
  5. Allori, V. (2013). Primitive ontology and the structure of fundamental physical theories. In A. Ney & D. Albert (Eds.), The wave function: Essays on the metaphysics of quantum mechanics (pp. 58-75). Oxford University Press.
  6. Allori, V. (2017). Scientifıc realism and primitive ontology or: The pessimistic induction and the nature of the wave function. Lato Sensu: Revue De La Société De Philosophie Des Sciences, 5(1), 69-76. https://doi.org/10.20416/lsrsps.v5i1.10
  7. Barrett, J. (2019). The conceptual foundations of quantum mechanics. Oxford University Press.
  8. Baublitz, M., & Shimony, A. (1996). Tension in Bohm’s interpretation of quantum mechanics. In J. Cushing, A. Fine, & S. Goldstein (Eds.), Bohmian mechanics and quantum theory: An appraisal (pp. 251-264). Springer.
  9. Bell, J. (1971). Introduction to the hidden-variable question. In A. Aspect (Ed.), Speakable and unspeakable in quantum mechanics (pp. 29-39). Cambridge University Press.
  10. Bell, J. (1981). Quantum mechanics for cosmologists. In A. Aspect (Ed.), Speakable and unspeakable in quantum mechanics (pp. 117-138). Cambridge University Press.
  11. Belousek, D. (2003). Formalism, ontology and methodology in Bohmian mechanics. Foundations of Science, 8(2), 109-172. https://doi.org/10.1023/A:1023925900377
  12. Bennett, K. (2009). Composition, colocation and metaontology. In D. Chalmers, D. Manley & R. Wasserman (Eds.), Metametaphysics (pp. 38-76). Oxford University Press.
  13. Bohm, D. (1952a). A suggested interpretation of the quantum theory in terms of ‘hidden’ variables I. Physical Review, 85(2), 166-179.
  14. Bohm, D. (1952b). A suggested interpretation of the quantum theory in terms of ‘hidden’ variables II. Physical Review, 85(2), 180-193.
  15. Bohm, D., & Hiley, B. (1993). The undivided universe: An ontological interpretation of quantum theory. Routledge.
  16. Bonk, T. (2008). Underdetermination: An essay on evidence and the limits of natural knowledge (Vol. 261). Springer Science & Business Media.
  17. Bricker, P. (2020). Modal matters: Essays in metaphysics. Oxford University Press.
  18. Cameron, R. (2008). Truthmakers and ontological commitment: Or how to deal with complex objects and mathematical ontology without getting into trouble. Philosophical Studies, 140, 1-18.
  19. Cohen, J., & Callender, C. (2009). A better best system account of lawhood. Philosophical Studies, 145, 1-34.
  20. de Gosson, M. (2001). The principles of Newtonian and quantum mechanics: The need for Planck’s constant h. Imperial College Press.
  21. De Regt, H., & Dieks, D. (2005). A contextual approach to scientifıc understanding (Vol. 144). Synthese.
  22. Dürr, D., Goldstein, S., & Zanghì, N. (1992). Quantum equilibrium and the origin of absolute uncertainty. Journal of Statistical Physics, 67(5), 843-907.
  23. Dürr, D., Goldstein, S., & Zanghì, N. (1995). Bohmian mechanics and the meaning of the wave function. In R. Cohen, M. Horne & J. Stachel (Eds.), Experimental metaphysics: Quantum mechanical studies for Abner Shimony (Vol. 1, pp. 25-38). Boston Studies in the Philosophy and History of Science.
  24. Eddington, A. (1941). Discussion: Group structure in physical science. Mind, 50, 268-279.
  25. Esfeld, M. (2014). The primitive ontology of quantum physics: Guidelines for an assessment of the proposals. Studies in History and Philosophy of Modern Physics, 47, 99-106.
  26. Esfeld, M., & Deckert, D. (2017). A minimalist ontology of the natural world. Routledge.
  27. French, S. (2014). The structure of the world: Metaphysics and representation. Oxford University Press.
  28. Goldstein, S., & Zanghì, N. (2013). Reality and the role of the wavefunction in quantum theory. In A. Ney & D. Albert (Eds.), The wave function: Essays on the metaphysics of quantum mechanics (pp. 263-278). Oxford University Press.
  29. Greenberger, D. (2001). Inadequacy of the usual Galilean transformation in quantum mechanics. Physical Review Letters, 87(10), 1004051-1004054.
  30. Holland, P. (1993). The quantum theory of motion: An account of the de Broglie-Bohm causal interpretation of quantum mechanics. Cambridge University Press.
  31. Howard, D. (2011). Are elementary particles individuals? A critical appreciation of Steven French and Décio Krause’s Identity in Physics: A Historical, Philosophical, and Formal Analysis. Metascience, 20(2), 225-231.
  32. Hubert, M., & Romano, D. (2017). The wave-function as a multi-fıeld. European Journal for Philosophy of Science, 8(3), 521-537.
  33. Kriegel, U. (2013). The epistemological challenge of revisionary metaphysics. Philosophers’ Imprint, 13(12), 1-30.
  34. Ladyman, J., Ross, D., & Spurrett, D. (2007). Every thing must go: Metaphysics naturalized. Oxford University Press.
  35. Laudan, L. (1990). Demystifying underdetermination. Minnesota Studies in the Philosophy of Science, 14, 267-297.
  36. Loewer, B. (1996). Humean supervenience. Philosophical Topics, 24(1), 101-126.
  37. Manero, J. (2024). On the existence of a preserved ontology posited by a high-dimensional Bohmian interpretation. Foundations of Science, 29, 1121-1142.
  38. Maudlin, T. (2019). Philosophy of physics: Quantum theory. Princeton University Press.
  39. Monton, B. (2006). Quantum mechanics and 3N-dimensional space. Philosophy of Science, 73(5), 778-789.
  40. Ney, A. (2015). Fundamental physical ontologies and the constraint of empirical coherence: A defense of wave function realism. Synthese, 192(10), 3105-3124.
  41. Ney, A. (2017). Locality and wave function realism. In O. Lombardi, S. Fortin, C. López, & F. Holik (Eds.), Realism, wave function, and primitive ontology (pp. 164-182). Cambridge University Press.
  42. Norsen, T., Marian, D., & Oriols, X. (2015). Can the wave function in confıguration space be replaced by single- particle wave functions in physical space? Synthese, 192(10), 3125-3151.
  43. Quine, W. (1948). On what there is. The Review of Metaphysics, 2(1), 21-38.
  44. Quine, W. (1975). On empirically equivalent systems of the world. Erkenntnis, 9, 313-328.
  45. Roberts, B. (2011). Group structural realism. The British Journal for the Philosophy of Science, 62(1), 47-69.
  46. Solé, A. (2013). Bohmian mechanics without wave function ontology. Studies in History and Philosophy of Modern Physics, 44(4), 365-378.
  47. Suárez, M. (2015). Bohmian dispositions. Synthese, 192(10), 3203-3228.
  48. Valentini, A. (1992). On the pilot-wave theory of classical, quantum and subquantum physics. PhD. diss: International School for Advanced Studies.
  49. van Fraassen, B. (1991). Quantum mechanics: An empiricist view. Clarendon Press Oxford.
  50. Weyl, H. (1931). The theory of groups and quantum mechanics. Dover.