v. 30 n. 2 (2010)
Artigos

Aristotle's Double Solution to Zeno's 'Dichotomy', Sign of a Radical Revision?

Publicado 2010-11-01

Resumo

In the Physics Aristotle offers two solutions to Zeno's 'Dichotomy'. Waterlow and Sorabji intend to show that the existence of two solutions indicates Aristotle's radical revision of the Physics' fundamental concepts. This article aims to criticize Waterlow's and Sorabji's arguments. An interpretation of the Aristotelian text is also offered that points to the two solution's compatibility and to the coherence of the Physics' fundamental concepts.

Referências

  1. Barnes, J. (ed.) (1975), Aristotle’s Posterior Analytics, Oxford, Oxford University Press.
  2. Barnes, J. (ed.) (1995), The Complete Works of Aristotle, Vol. I, Princeton, Princeton University Press.
  3. Bostock, D. (1987), “Time and the Continuum”, Oxford Studies in Ancient Philosophy, 6, pp. 255-270.
  4. Bostock, D. (2006), Space,Time, Matter and Form, Oxford, Oxford University Press.
  5. Bostock, D. (2006a), “Aristotle on Continuity in Physics VI”, in Bostock, D. (2006), Space, Time, Matter and Form, Oxford, Oxford University Press, pp. 158-188.
  6. Bostock, D. (2006b), “Aristotle, Zeno and the Potential Infinite”, in Bostock, D. (2006), Space, Time, Matter and Form, Oxford, Oxford University Press, pp. 116-129.
  7. Bowin, J. (2007), “Aristotelian Infinity”, Oxford Studies in Ancient Philosophy, 32, pp. 232-250.
  8. Charlton, W. (1991), “Aristotle’s Potential Infinites”, in Judson, L. (ed.), Aristotle’s Physics: A Collection of Essays, Oxford, Clarendon Press, pp. 129–149.
  9. Ferber, R. (1995), Zenons Paradoxien der Bewegung und die Struktur vonRaum und Zeit, Stuttgart, Franz Steiner Verlag.
  10. Ferber, R. (2000), “Zeno’s Metrical Paradox of Extension and Descartes’ Mind-Body Problem”, Methexis, XIII, pp. 139-152.
  11. Furley, D. J. (1982), “The Geek commentators’ treatment of Aristotle’s theory of the continuum”, in Kretzmann, N. (ed.) (1982), Infinity and Continuity in Ancient and Medieval Thought, Ithaca, Cornel lUniversity Press, pp. 17-36.
  12. Graham, D.W. (1999), Aristotle: Physics Book VIII, Oxford, Oxford University Press.
  13. Heinaman, R. (1994), “Is Aristotle’s definition of change circular?”, Apeiron, 27 (1), pp. 25-37.
  14. Hussey, E. (1995), The Presocratics, Indianapolis, Hackett.
  15. Knorr, W. R. (1982), “Infinity and continuity: the interaction of mathematics and philosophy in Antiquity”, in Kretzmann, N. (ed.) (1982), Infinity and Continuity in Ancient and Medieval Thought, Ithaca, Cornell University Press, pp. 112-145.
  16. Kretzmann, N. (ed.) (1982), Infinity and Continuity in Ancient and Medieval Thought, Ithaca, Cornell University Press.
  17. Makin, S. (2003), “What does Aristotle mean by priority in substance?”, Oxford Studies in Ancient Philosophy, 23, pp. 209-238.
  18. Miller, F. D. (1982), “Aristotle against the Atomists”, in Kretzmann, N. (ed.) (1982), Infinity and Continuity in Ancient and Medieval Thought,Ithaca, Cornell University Press, pp. 87-111.
  19. Ross, W.D. (1936), Aristotle’s Physics. A revised text with introduction and commentary, Oxford, Oxford University Press.
  20. Shields, C. (2007), Aristotle, London, Routledge.
  21. Solmsen, F. (1960), Aristotle’s system of the physical world, Ithaca, Cornell University Press.
  22. Sorabji, R. (1983), Time, Creation and the Continuum, London, Duckworth.
  23. Waterfield, R. and Bostock, D. (1999), Aristotle: Physics, Oxford, Oxford University Press.
  24. Waterlow, S. (1982), Nature, Change and Agency in Aristotle’s Physics, Oxford, Oxford University Press.
  25. White, M.J. (1992), The Continuous and the Discrete, Oxford, OxforUniversity Press