Vol. 32 Núm. 1 (2012)
Simposio

Anti-Realism and Infinitary Proofs

Diego Tajer
Universidad de Buenos Aires / CONICET

Publicado 2012-05-01

Palabras clave

  • Anti-realism,
  • Realism,
  • Infinitary logic
  • Anti-realismo,
  • Realismo,
  • Lógica infinitaria

Resumen

En la discusión sobre la Paradoja de Yablo, un tópico debatido es el estatus de las pruebas infinitarias. Se suele considerar que, aunque un realista podría (con cierto esfuerzo) aceptarlas, un anti-realista no podría hacerlo en absoluto. En este artículo, argumento que hay razones plausibles para que un anti-realista acepte pruebas y reglas de inferencia infinitarias

Citas

  1. Beall, JC. (2001), ‘Is Yablo’s paradox non circular?’, Analysis, 61, pp. 176-187.
  2. Bringsjord, S. and van Heuveln, B. (2003), ‘The ‘mental eye’ defense of an infinitized version of Yablo’s paradox’, Analysis, 63, pp. 61-70.
  3. Brouwer, l. (1928), 'Mathematics, science and language', in Ewald, W. (1996), From Kant to Hilbert, vol. 2, Oxford University Press, pp.1170-1785.
  4. Cook, R. (forthcoming), Yablo’s Paradox: An Essay on Circularity, Oxford, Oxford University Press.
  5. Dummett, M. (1975), 'Wang’s Paradox’, Synthese, 30, pp. 301-324.
  6. Hilbert, D. (1931), ‘The grounding of elementary number theory’, in Ewald, W. (1996), From Kant to Hilbert, vol. 2, Oxford UniversityPress, pp. 1148-1157.
  7. Ignjatovic, A. (1992), ‘Hilbert’s program and the omega-rule’, Journal of Symbolic Logic, 59 (1), pp. 322-343.
  8. Ketland, J. (2005), ‘Some more curious inferences’, Analysis, 65, pp 18-24.
  9. Moore, A. (1990), ‘A problem for intuitionism: The apparent possibility of performing infinitely many tasks in a finite time’, Proceedings of the Aristotelian Society, 90, pp. 17-34.
  10. Sorensen, R. (1998), ‘Yablo’s paradox and kindred infinite liars’, Mind, 107, pp. 137-155.
  11. Tarski, A. (1936), 'On the Concept of following logically', Stroińska, M. and Hitchcock, D. (trads.), History and Philosophy of Logic, 2002, 23, pp. 155-196.
  12. Tennant, N. (1997), The taming of the true, Oxford, Oxford University Press.
  13. van Dantzig, D. (1956), ’Is 101010a finite number?’, Dialectica, 10, pp.273-277.
  14. Wittgenstein, l. (1964), Remarks on the Foundations of Mathematics, von Wright, G. H., Rhees, R. and anscombe, G. E. M. (eds), Anscombe, G. E. M. (trad.), Oxford, Blackwell.
  15. Wright, C. (1982), ‘Strict finitism’, Synthese, 51 (2), pp. 203-282.