Vol. 40 Núm. 1 (2020)
Artículos

Las soluciones subestructurales a las paradojas y el problema de la dependencia

Bruno Da Ré
IIF-SADAF-CONICET / Universidad de Buenos Aires, Argentina

Publicado 2020-05-01

Palabras clave

  • Lógicas subestructurales,
  • Teorías de la verdad,
  • Reglas estructurales,
  • Reglas operacionales
  • Substructural Logics,
  • Theories of Truth,
  • Structural Rules,
  • Operational Rules

Resumen

En los últimos años se han desarrollado diversas soluciones subestructurales a las paradojas semánticas. En particular, se han postulado teorías no transitivas, no contractivas, no reflexivas y, recientemente, no monotónicas. Sin embargo, cuando dichas soluciones son presentadas mediante cálculos de secuentes surge el problema de la dependencia. En pocas palabras, este problema consiste en que no es posible separar las reglas estructurales de la formulación de las otras reglas del cálculo. En este artículo, presentaré este problema y mostraré que, de hecho, es posible construir un cálculo que no contiene ninguna regla estructural de manera explícita y que, sin embargo, resulta trivial al agregarle un predicado veritativo transparente con ciertos axiomas. Luego, delimitaré los alcances de dicho problema, concluyendo que la metodología correcta para seleccionar una solución subestructural a las paradojas semánticas debe basarse en argumentos filosóficos y, tal vez, en un estudio empírico sobre el fenómeno de la paradojicidad y no en la comparación de derivaciones en cálculos particulares.

Citas

  1. Avron, A. (2003). Classical gentzen-type methods in propositional many-valued logics. In M. Fitting & E. Orłowska (Eds.), Beyond two: Theory and applications of multiple-valued logic (pp. 117-155). Springer.
  2. Beall, J. (2009). Spandrels of truth. Oxford University Press.
  3. Beall, J., Glanzberg, M., & Ripley, D. (2016). Liar paradox. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Winter ed.). Stanford University.
  4. Beall, J., Glanzberg, M., & Ripley, D. (2018). Formal theories of truth. Oxford University Press.
  5. Brady, R. (2006). Universal logic. CSLI Publications.
  6. Caret, C. R., & Weber, Z. (2015). A note on contraction-free logic for validity. Topoi, 34(1), 63-74.
  7. Cobreros, P., Egré, P., Ripley, D., & van Rooij, R. (2012). Tolerant, classical, strict. Journal of Philosophical Logic, 41(2), 347-385.
  8. Cobreros, P., Egré, P., Ripley, D., & van Rooij, R. (2013). Reaching transparent truth. Mind, 122(488), 841-866.
  9. Cobreros, P., Egré, P., Ripley, D., & van Rooij, R. (2014). Vagueness, truth and permissive consequence. In T. Achourioti, K. Fujimoto, H. Galinon & J. Martínez-Fernández (Eds.), Unifying the philosophy of truth (pp. 409-430). Springer.
  10. Cobreros, P., Egré, P., Ripley, D., & van Rooij, R. (2016). Comparing some substructural strategies dealing with vagueness. In J. Carvalho, M. J. Lesot, U. Kaymak, S. Vieira, B. Bouchon-Meunier & R. Yager (Eds.), Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2016. Communications in Computer and Information Science, 611 (pp. 161-172). Springer.
  11. Da Ré, B. (2020). Structural weakening and paradoxes. Manuscrito enviado para publicación.
  12. Dutilh Novaes, C., & French, R. (2018). Paradoxes and structural rules from a dialogical perspective. Philosophical Issues, 28(1), 129-158.
  13. Égré, P., Gardelle V., & Ripley, D. (2013). Vagueness and order effects in color categorization. Journal of Logic, Language and Information, 22(4), 391-420
  14. Égré, P., & Zehr, J. (2018). Are gaps preferred to gluts?: A closer look at borderline contradictions. In E. Castroviejo, G. Weidman Sassoon, & L. McNally. (Eds.), The semantics of gradability, vagueness, and scale structure: Experimental perspectives (pp. 25-58). Springer.
  15. Fjellstad, A. (2015). How a semantics for tonk should be. The Review of Symbolic Logic, 8(3), 488-505.
  16. Fjellstad, A. (2016), Naive modus ponens and failure of transitivity. Journal of Philosophical Logic, 45(1), 65-72.
  17. French, R. (2016). Structural reflexivity and the paradoxes of self-reference. Ergo, 3(5), 113-131. http://dx.doi.org/10.3998/ergo.12405314.0003.005
  18. Hjortland, O. T. (2017). Theories of truth and the maxim of minimal mutilation. Synthese, 1-32.
  19. Mares, E., & Paoli, F. (2014). Logical consequence and the paradoxes. Journal of Philosophical Logic, 43(2-3), 439-469.
  20. Murzi, J., & Carrara, M. (2015). Paradox and logical revision: A short introduction. Topoi, 34(1), 7-14.
  21. Murzi, J., & Shapiro, L. (2015). Validity and truth-preservation. In T. Achourioti, K.Fujimoto, H. Galinon & J. Martínez-Fernández (Eds.), Unifying the philosophy of truth (pp. 431-459). Springer.
  22. Nicolai, C. & Rossi, L. (2018). Principles for object-linguistic consequence: From logical to irreflexive. Journal of Philosophical Logic, 47, 549–577.
  23. Ripley, D. (2012). Conservatively extending classical logic with transparent truth. Review of Symbolic Logic, 5(2), 354-378.
  24. Ripley, D. (2014). Review of Replacing truth by Kevin Scharp. Notre Dame Philosophical Reviews. https://ndpr.nd.edu/news/replacing-truth/
  25. Ripley, D. (2015a). Anything goes. Topoi, 34(1), 25-36.
  26. Ripley, D. (2015b). Comparing substructural theories of truth. Ergo, 2(13), 299-328.
  27. Ripley, D. (2016). Experimental philosophical logic. In J. Sytsma & W. Buckwalter (Eds.), A companion to experimental philosophy (pp. 523-534). Wiley-Blackwell.
  28. Ripley, D. (2018). On the “transitivity” of consequence relations. Journal of Logic and Computation, 28(2), 433-450.
  29. Rosenblatt, L. (2019). Noncontractive classical logic. Notre Dame Journal of Formal Logic, 60(4), 559-585.
  30. Schroeder-Heister, P. (2012). Paradoxes and structural rules. In C. Dutilh Novaes & O. T. Hjortland (Eds.), Insolubles and consequences: Essays in honour of Stephen Read (pp. 203–211). College Publications.
  31. Schroeder-Heister, P. (2016). Restricting initial sequents: The trade-offs between identity, contraction and cut. In R. Kahle, T. Strahm, & T. Studer (Eds.), Advances in proof theory (pp. 339–351). Birkhäuser.
  32. Shapiro, L. (2011). Deflating logical consequence. Philosophical Quarterly, 61, 320-342.
  33. Tarski, A. (1983). Logic, semantics, metamathematics: Papers from 1923 to 1938. Hackett Publishing.
  34. Tennant, N. (2015). A new unified account of truth and paradox. Mind, 124(494), 571-605. https://doi.org/10.1093/mind/fzu179
  35. Weber, Z. (2014). “Naive validity”. Philosophical Quarterly, 64(254), 99-114.
  36. Weir, A. (2013). A robust non-transitive logic. Topoi, 34(1), 1-9.
  37. Zardini, E. (2011). Truth without contra(di)ction. The Review of Symbolic Logic, 4(4), 498-535.
  38. Zardini, E. (2013). Naive modus ponens. Journal of Philosophical Logic, 42(4), 575-593.
  39. Zardini, E. (2014). Naive truth and naive logical properties. The Review of Symbolic Logic, 7(2), 351-384.