Vol. 40 No. 1 (2020)
Articles

The substructural solution to paradoxes and the problem of the dependence

Bruno Da Ré
IIF-SADAF-CONICET / Universidad de Buenos Aires, Argentina

Published 2020-05-01

Keywords

  • Lógicas subestructurales,
  • Teorías de la verdad,
  • Reglas estructurales,
  • Reglas operacionales
  • Substructural Logics,
  • Theories of Truth,
  • Structural Rules,
  • Operational Rules

Abstract

In past years, several substructural solutions to semantical paradoxes have been developed. In particular, nontransitive, nocontractive, nonmonotonic and nonreflexive theories have been proposed. However, when such a solutions are presented using sequent-calculi it emerges what I call the problem of the dependence. In a nutshell, this problem consists in that it’s not easy (or sometimes even possible) to distinguish between the structural rules and the other rules of the calculus. In this article, I will present in detail this problem and I show that even worst there is a calculus such that doesn’t contain any structural rule but cannot nontrivially handle semantical vocabulary. Finally, I will delimit this problem and I will conclude that the correct methodology for preferring one specific substructural theory should be based on philosophical arguments (or in some case, on empirical bases), but not in the comparison between calculi.

References

  1. Avron, A. (2003). Classical gentzen-type methods in propositional many-valued logics. In M. Fitting & E. Orłowska (Eds.), Beyond two: Theory and applications of multiple-valued logic (pp. 117-155). Springer.
  2. Beall, J. (2009). Spandrels of truth. Oxford University Press.
  3. Beall, J., Glanzberg, M., & Ripley, D. (2016). Liar paradox. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Winter ed.). Stanford University.
  4. Beall, J., Glanzberg, M., & Ripley, D. (2018). Formal theories of truth. Oxford University Press.
  5. Brady, R. (2006). Universal logic. CSLI Publications.
  6. Caret, C. R., & Weber, Z. (2015). A note on contraction-free logic for validity. Topoi, 34(1), 63-74.
  7. Cobreros, P., Egré, P., Ripley, D., & van Rooij, R. (2012). Tolerant, classical, strict. Journal of Philosophical Logic, 41(2), 347-385.
  8. Cobreros, P., Egré, P., Ripley, D., & van Rooij, R. (2013). Reaching transparent truth. Mind, 122(488), 841-866.
  9. Cobreros, P., Egré, P., Ripley, D., & van Rooij, R. (2014). Vagueness, truth and permissive consequence. In T. Achourioti, K. Fujimoto, H. Galinon & J. Martínez-Fernández (Eds.), Unifying the philosophy of truth (pp. 409-430). Springer.
  10. Cobreros, P., Egré, P., Ripley, D., & van Rooij, R. (2016). Comparing some substructural strategies dealing with vagueness. In J. Carvalho, M. J. Lesot, U. Kaymak, S. Vieira, B. Bouchon-Meunier & R. Yager (Eds.), Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2016. Communications in Computer and Information Science, 611 (pp. 161-172). Springer.
  11. Da Ré, B. (2020). Structural weakening and paradoxes. Manuscrito enviado para publicación.
  12. Dutilh Novaes, C., & French, R. (2018). Paradoxes and structural rules from a dialogical perspective. Philosophical Issues, 28(1), 129-158.
  13. Égré, P., Gardelle V., & Ripley, D. (2013). Vagueness and order effects in color categorization. Journal of Logic, Language and Information, 22(4), 391-420
  14. Égré, P., & Zehr, J. (2018). Are gaps preferred to gluts?: A closer look at borderline contradictions. In E. Castroviejo, G. Weidman Sassoon, & L. McNally. (Eds.), The semantics of gradability, vagueness, and scale structure: Experimental perspectives (pp. 25-58). Springer.
  15. Fjellstad, A. (2015). How a semantics for tonk should be. The Review of Symbolic Logic, 8(3), 488-505.
  16. Fjellstad, A. (2016), Naive modus ponens and failure of transitivity. Journal of Philosophical Logic, 45(1), 65-72.
  17. French, R. (2016). Structural reflexivity and the paradoxes of self-reference. Ergo, 3(5), 113-131. http://dx.doi.org/10.3998/ergo.12405314.0003.005
  18. Hjortland, O. T. (2017). Theories of truth and the maxim of minimal mutilation. Synthese, 1-32.
  19. Mares, E., & Paoli, F. (2014). Logical consequence and the paradoxes. Journal of Philosophical Logic, 43(2-3), 439-469.
  20. Murzi, J., & Carrara, M. (2015). Paradox and logical revision: A short introduction. Topoi, 34(1), 7-14.
  21. Murzi, J., & Shapiro, L. (2015). Validity and truth-preservation. In T. Achourioti, K.Fujimoto, H. Galinon & J. Martínez-Fernández (Eds.), Unifying the philosophy of truth (pp. 431-459). Springer.
  22. Nicolai, C. & Rossi, L. (2018). Principles for object-linguistic consequence: From logical to irreflexive. Journal of Philosophical Logic, 47, 549–577.
  23. Ripley, D. (2012). Conservatively extending classical logic with transparent truth. Review of Symbolic Logic, 5(2), 354-378.
  24. Ripley, D. (2014). Review of Replacing truth by Kevin Scharp. Notre Dame Philosophical Reviews. https://ndpr.nd.edu/news/replacing-truth/
  25. Ripley, D. (2015a). Anything goes. Topoi, 34(1), 25-36.
  26. Ripley, D. (2015b). Comparing substructural theories of truth. Ergo, 2(13), 299-328.
  27. Ripley, D. (2016). Experimental philosophical logic. In J. Sytsma & W. Buckwalter (Eds.), A companion to experimental philosophy (pp. 523-534). Wiley-Blackwell.
  28. Ripley, D. (2018). On the “transitivity” of consequence relations. Journal of Logic and Computation, 28(2), 433-450.
  29. Rosenblatt, L. (2019). Noncontractive classical logic. Notre Dame Journal of Formal Logic, 60(4), 559-585.
  30. Schroeder-Heister, P. (2012). Paradoxes and structural rules. In C. Dutilh Novaes & O. T. Hjortland (Eds.), Insolubles and consequences: Essays in honour of Stephen Read (pp. 203–211). College Publications.
  31. Schroeder-Heister, P. (2016). Restricting initial sequents: The trade-offs between identity, contraction and cut. In R. Kahle, T. Strahm, & T. Studer (Eds.), Advances in proof theory (pp. 339–351). Birkhäuser.
  32. Shapiro, L. (2011). Deflating logical consequence. Philosophical Quarterly, 61, 320-342.
  33. Tarski, A. (1983). Logic, semantics, metamathematics: Papers from 1923 to 1938. Hackett Publishing.
  34. Tennant, N. (2015). A new unified account of truth and paradox. Mind, 124(494), 571-605. https://doi.org/10.1093/mind/fzu179
  35. Weber, Z. (2014). “Naive validity”. Philosophical Quarterly, 64(254), 99-114.
  36. Weir, A. (2013). A robust non-transitive logic. Topoi, 34(1), 1-9.
  37. Zardini, E. (2011). Truth without contra(di)ction. The Review of Symbolic Logic, 4(4), 498-535.
  38. Zardini, E. (2013). Naive modus ponens. Journal of Philosophical Logic, 42(4), 575-593.
  39. Zardini, E. (2014). Naive truth and naive logical properties. The Review of Symbolic Logic, 7(2), 351-384.