Published 2020-11-01
Keywords
- Logic Pluralism,
- Quine's Challenge,
- Collapse Problem,
- Mixed Logics
- Pluralismo Lógico,
- DesafÃo de Quine,
- Problema del Colapso,
- Lógicas Mixtas
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Abstract
In this work, I will present a way to avoid the most recurrent problems in a certain version of logical pluralism, one that argues that even considering a fixed language there are multiple legitimate logical systems. To do this, it will be necessary to consider the starting points of the pluralist program and explain the problems that arise from them, mainly the Quine Challenge and the Collapse Problem. Then, I will propose a modification for what is understood by logical consequence, to be able to consider a family of logical systems, mixed logics, which cover both pure and impure logics. Finally, I will show that with a reasonable interpretation of the formalism, those problems can be avoided while respecting the spirit of the pluralist program.
References
- Barrio, E. A., Pailos, F., & Szmuc, D. (2018). Substructural Logics, Pluralism and Collapse. Synthese. https://doi.org/10.1007/s11229-018-01963-3
- Barrio, E. A., Pailos, F., & Szmuc, D. (2020). A Hierarchy of Classical and Paraconsistent Logics. Journal of Philosophical Logic, 49, 93-120. https://doi.org/10.1007/s10992-019-09513-z
- Beall, J. C., & Restall, G. (2000). Logical Pluralism. Australasian Journal of Philosophy, 78(4), 475-493. https://doi.org/10.1080/ 00048400012349751
- Beall, J. C., & Restall, G. (2001). Defending Logical Pluralism. En B. Brown & J. Woods (Eds.), Logical consequence: Rival approaches. Proceedings of the 1999 Conference of the Society of Exact Philosophy (pp. 1-22). Hermes.
- Beall, J. C., & Restall, G. (2006). Logical pluralism. Clarendon Press.
- Bou, F., Esteva, F., Font, J. M., Gil, A., Godo, L., Torrens, A., & Verdú, V. (2009). Logics preserving degrees of truth from varieties of residuated lattices. Journal of Logic and Computation, 19(6), 1031-1069. https://doi.org/10.1093/logcom/exp030
- Bou, F., Esteva, F., Font, J. M., Gil, A., Godo, L., Torrens, A., & Verdú, V. (2012). Logics preserving degrees of truth from varieties of residuated lattices. Journal of Logic and Computation, 22(3), 661-665. https://doi.org/10.1093/logcom/exr003
- Bueno, O., & Shalkowski, S. (2009). Modalism and logical pluralism. Mind, 118(470), 295-321. https://www.jstor.org/stable/20532763
- Caret, C. R. (2017). The collapse of logical pluralism has been greatly exaggerated. Erkenntnis, 82(4), 739-760. https://doi.org/10.1007/s10670-016-9841-7
- Chemla, E., Egré, P., & Spector, B. (2017). Characterizing logical consequence in many-valued logic. Journal of Logic and Computation, 27(7), 2193-2226. https://doi.org/10.1093/logcom/exx001
- Cobreros, P., Egré, P., Ripley, D., & van Rooij, R. (2012). Tolerant, classical, strict. Journal of Philosophical Logic, 41(2), 347-385. https://doi.org/10.1007/s10992-010-9165-z
- Cobreros, P., Egré, P., Ripley, D., & van Rooij, R. (2014). Reaching transparent truth. Mind, 122(488), 841-866. https://www.jstor.org/stable/24489584
- Da Ré, B., Pailos, F., Szmuc, D., & Teijeiro, P. (2020). Metainferential duality. Journal of Applied Non-classical Logics. https://doi.org/10.1080/11663081.2020.1826156
- Dummett, M. (1975). The philosophical basis of intuitionistic logic. En H. E. Rose & J. C. Shepherdson (Eds.), Logic Colloquium ‘73 Proceedings of the Logic Colloquium, Studies in Logic and the Foundations of Mathematics, 80 (pp. 5-40). North Holland. https://doi.org/10.1016/S0049-237X(08)71941-4
- Ferrari, F. & Moruzzi, S. (2020). Logical pluralism, indeterminacy and the normativity of logic. Inquiry, 63(3-4), 323-346. https://doi.org/10.1080/0020174X.2017.1393198
- French, R. (2016). Structural reflexivity and the paradoxes of self-reference. Ergo, 3(5), 113-131. https://doi.org/10.3998/ergo.12405314.0003.005
- Haack, S. (1978). Philosophy of logics. Cambridge University Press.
- Humberstone, L. (2011). The connectives. The MIT Press. https://doi.org/10.7551/mitpress/9055.001.0001
- Kouri Kissel, T. (2018a). Connective meaning in Beall and Restall’s logical pluralism. En J. Wyatt, N. Pedersen & N. Kellen (Eds.), Pluralisms in truth and logic (pp. 217-235). Palgrave Macmillan. https://doi.org/10.1007/978-3-319-98346-2_10
- Kouri Kissel, T. (2018b). Logical Pluralism from a Pragmatic Perspective. Australasian Journal of Philosophy, 96(3), 578-591. https://doi.org/10.1080/00048402.2017.1399151
- Pailos, F. (2020). Disjoint logics. Logic and Logical Philosophy. http://dx.doi.org/10.12775/LLP.2020.014
- Pailos, F. (manuscrito). Pure logics.
- Price, H. (1983). Sense, assertion, Dummett, and denial. Mind, 92(366), 161-173. https://www.jstor.org/stable/2253778
- Priest, G. (1979). The logic of paradox. Journal of Philosophical Logic, 8(1), 219-241. http://www.jstor.org/stable/30227165
- Priest, G. (2001). Logic: one or many? En B. Brown & J. Woods (Eds.), Logical consequence: Rival approaches. Proceedings of the 1999 Conference of the Society of Exact Philosophy (pp. 23-28). Hermes.
- Quine, W. V. (1970). Filosofía de la Lógica. Alianza.
- Read, S. (2006). Monism: The one true logic. En D. DeVidi & T. Kenyon (Eds.), A logical approach to philosophy: Essays in memory of Graham Solomon (pp. 193-209). Springer. https://doi.org/10.1007/1-4020-4054-7_10
- Restall, G. (2005). Multiple conclusions. En P. Hájek, L. Valdés-Villanueva & D. Westerståhl (Eds.), Logic, methodology, and philosophy of science: Proceedings of the Twelfth International Congress (pp. 189-205). Kings’ College Publications. https://doi.org/10.1093/philmat/nkn004
- Ripley, D. (2012). Conservatively extending classical logic with transparent truth. Review of Symbolic Logic, 5(2), 354-378. https://doi.org/10.1017/S1755020312000056
- Rumfitt, I. (2000). ‘Yes’ and ‘no’. Mind, 109(436), 781-823. https://doi.org/10.1093/mind/109.436.781
- Smiley, T. (1996). Rejection. Analysis, 56(1), 1-9. https://doi.org/10.1111/j.0003-2638.1996.00001.x
- Stei, E. (2020). Rivalry, normativity, and the collapse of logical pluralism. Inquiry, 63(3-4), 411-432. https://doi.org/10.1080/ 0020174X.2017.1327370
- Steinberger, F. (2011). Why conclusions should remain single. Journal of Philosophical Logic, 40(3), 333-355. https://doi.org/10.1007/s10992-010-9153-3