Publicado 2020-11-01
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Resumo
En este trabajo presentaré una forma de evitar los problemas más recurrentes en cierta versión del pluralismo lógico, aquella que defiende que incluso considerando un lenguaje fijo existen múltiples sistemas lógicos legítimos. Para ello, será necesario considerar los puntos de partida del programa pluralista y explicitar los problemas que de ellos surgen, principalmente el Desafío de Quine y el Problema del Colapso. Luego, propondré una modificación respecto de lo que se entiende por consecuencia lógica, para poder considerar una familia de sistemas lógicos, las lógicas mixtas, que abarcan tanto a las lógicas puras como a las impuras. Finalmente, mostraré que con una interpretación razonable del formalismo se puede eludir aquellos problemas a la vez que se respeta el espíritu del programa pluralista.
Referências
- Barrio, E. A., Pailos, F., & Szmuc, D. (2018). Substructural Logics, Pluralism and Collapse. Synthese. https://doi.org/10.1007/s11229-018-01963-3
- Barrio, E. A., Pailos, F., & Szmuc, D. (2020). A Hierarchy of Classical and Paraconsistent Logics. Journal of Philosophical Logic, 49, 93-120. https://doi.org/10.1007/s10992-019-09513-z
- Beall, J. C., & Restall, G. (2000). Logical Pluralism. Australasian Journal of Philosophy, 78(4), 475-493. https://doi.org/10.1080/ 00048400012349751
- Beall, J. C., & Restall, G. (2001). Defending Logical Pluralism. En B. Brown & J. Woods (Eds.), Logical consequence: Rival approaches. Proceedings of the 1999 Conference of the Society of Exact Philosophy (pp. 1-22). Hermes.
- Beall, J. C., & Restall, G. (2006). Logical pluralism. Clarendon Press.
- Bou, F., Esteva, F., Font, J. M., Gil, A., Godo, L., Torrens, A., & Verdú, V. (2009). Logics preserving degrees of truth from varieties of residuated lattices. Journal of Logic and Computation, 19(6), 1031-1069. https://doi.org/10.1093/logcom/exp030
- Bou, F., Esteva, F., Font, J. M., Gil, A., Godo, L., Torrens, A., & Verdú, V. (2012). Logics preserving degrees of truth from varieties of residuated lattices. Journal of Logic and Computation, 22(3), 661-665. https://doi.org/10.1093/logcom/exr003
- Bueno, O., & Shalkowski, S. (2009). Modalism and logical pluralism. Mind, 118(470), 295-321. https://www.jstor.org/stable/20532763
- Caret, C. R. (2017). The collapse of logical pluralism has been greatly exaggerated. Erkenntnis, 82(4), 739-760. https://doi.org/10.1007/s10670-016-9841-7
- Chemla, E., Egré, P., & Spector, B. (2017). Characterizing logical consequence in many-valued logic. Journal of Logic and Computation, 27(7), 2193-2226. https://doi.org/10.1093/logcom/exx001
- Cobreros, P., Egré, P., Ripley, D., & van Rooij, R. (2012). Tolerant, classical, strict. Journal of Philosophical Logic, 41(2), 347-385. https://doi.org/10.1007/s10992-010-9165-z
- Cobreros, P., Egré, P., Ripley, D., & van Rooij, R. (2014). Reaching transparent truth. Mind, 122(488), 841-866. https://www.jstor.org/stable/24489584
- Da Ré, B., Pailos, F., Szmuc, D., & Teijeiro, P. (2020). Metainferential duality. Journal of Applied Non-classical Logics. https://doi.org/10.1080/11663081.2020.1826156
- Dummett, M. (1975). The philosophical basis of intuitionistic logic. En H. E. Rose & J. C. Shepherdson (Eds.), Logic Colloquium ‘73 Proceedings of the Logic Colloquium, Studies in Logic and the Foundations of Mathematics, 80 (pp. 5-40). North Holland. https://doi.org/10.1016/S0049-237X(08)71941-4
- Ferrari, F. & Moruzzi, S. (2020). Logical pluralism, indeterminacy and the normativity of logic. Inquiry, 63(3-4), 323-346. https://doi.org/10.1080/0020174X.2017.1393198
- French, R. (2016). Structural reflexivity and the paradoxes of self-reference. Ergo, 3(5), 113-131. https://doi.org/10.3998/ergo.12405314.0003.005
- Haack, S. (1978). Philosophy of logics. Cambridge University Press.
- Humberstone, L. (2011). The connectives. The MIT Press. https://doi.org/10.7551/mitpress/9055.001.0001
- Kouri Kissel, T. (2018a). Connective meaning in Beall and Restall’s logical pluralism. En J. Wyatt, N. Pedersen & N. Kellen (Eds.), Pluralisms in truth and logic (pp. 217-235). Palgrave Macmillan. https://doi.org/10.1007/978-3-319-98346-2_10
- Kouri Kissel, T. (2018b). Logical Pluralism from a Pragmatic Perspective. Australasian Journal of Philosophy, 96(3), 578-591. https://doi.org/10.1080/00048402.2017.1399151
- Pailos, F. (2020). Disjoint logics. Logic and Logical Philosophy. http://dx.doi.org/10.12775/LLP.2020.014
- Pailos, F. (manuscrito). Pure logics.
- Price, H. (1983). Sense, assertion, Dummett, and denial. Mind, 92(366), 161-173. https://www.jstor.org/stable/2253778
- Priest, G. (1979). The logic of paradox. Journal of Philosophical Logic, 8(1), 219-241. http://www.jstor.org/stable/30227165
- Priest, G. (2001). Logic: one or many? En B. Brown & J. Woods (Eds.), Logical consequence: Rival approaches. Proceedings of the 1999 Conference of the Society of Exact Philosophy (pp. 23-28). Hermes.
- Quine, W. V. (1970). Filosofía de la Lógica. Alianza.
- Read, S. (2006). Monism: The one true logic. En D. DeVidi & T. Kenyon (Eds.), A logical approach to philosophy: Essays in memory of Graham Solomon (pp. 193-209). Springer. https://doi.org/10.1007/1-4020-4054-7_10
- Restall, G. (2005). Multiple conclusions. En P. Hájek, L. Valdés-Villanueva & D. Westerståhl (Eds.), Logic, methodology, and philosophy of science: Proceedings of the Twelfth International Congress (pp. 189-205). Kings’ College Publications. https://doi.org/10.1093/philmat/nkn004
- Ripley, D. (2012). Conservatively extending classical logic with transparent truth. Review of Symbolic Logic, 5(2), 354-378. https://doi.org/10.1017/S1755020312000056
- Rumfitt, I. (2000). ‘Yes’ and ‘no’. Mind, 109(436), 781-823. https://doi.org/10.1093/mind/109.436.781
- Smiley, T. (1996). Rejection. Analysis, 56(1), 1-9. https://doi.org/10.1111/j.0003-2638.1996.00001.x
- Stei, E. (2020). Rivalry, normativity, and the collapse of logical pluralism. Inquiry, 63(3-4), 411-432. https://doi.org/10.1080/ 0020174X.2017.1327370
- Steinberger, F. (2011). Why conclusions should remain single. Journal of Philosophical Logic, 40(3), 333-355. https://doi.org/10.1007/s10992-010-9153-3