Vol. 42 Núm. 1 (2022)
Sección temática

Pidiendo un Harry en su contexto: Una solución historicista al Problema de la Adopción

Miguel Alvarez Lisboa
IIF-SADAF-CONICET
Carlo Apablaza Ávila
Universidad de Chile, Santiago de Chile, Chile

Publicado 2022-05-01

Palabras clave

  • Epistemologia da lógica,
  • Anti-excepcionalismo lógico,
  • História da lógica,
  • Revolução científica,
  • Taxonomias lexicais
  • Epistemología de la Lógica,
  • Anti-Excepcionalismo Lógico,
  • Historia de la Lógica,
  • Revolución científica,
  • Taxonomías Lexicales
  • Epistemology of logic,
  • Logical Anti-exceptionalism,
  • History of Logic,
  • Scientific Revolution,
  • Lexical Taxonomies

Resumen

El Problema de la Adopción afirma que ciertas leyes lógicas no pueden ser adoptadas. El argumento constituye un desafío al antiexcepcionalismo lógico, en la medida en que este último debe poder justificar su afirmación de que la(s) teoría(s) lógica(s) en ejercicio puede(n) revisarse. El propósito de este artículo es responder al desafío, utilizando como unidad de análisis el concepto de Taxonomía Lexical propuesto por Kuhn. Como mostraremos, una visión sociológicamente enriquecida de las teorías científicas y la naturaleza de sus cambios permite dar cuenta de un antiexcepcionalismo lógico que evita el Problema de la Adopción.

Citas

  1. Ashworth, E. J. (1973). Existential assumptions in late medieval logic. American Philosophical Quarterly, 10(2), 141-147. www.jstor.org/stable/20009486
  2. Berger, A. (2011). Kripke on the incoherency of adopting a logic. En A. Berger (Ed.), Saul Kripke (pp. 177-208). Cambridge University Press. https://doi.org/10.1017/CBO9780511780622.009
  3. Bird, A. (2000). Thomas Kuhn. Acumen.
  4. Birkhoff, G., & Von Neumann, J. (1936). The logic of quantum mechanics. Annals of Mathematics, 37(4), 823-843. https://doi.org/10.2307/1968621
  5. Brouwer, L. E. J. (1912). Intuitionism and formalism. En H. Arendt (Ed.) (1975), Collected works of L. E. J. Brouwer I: Philosophy and foundations of mathematics (pp. 123-138). North-Holland.
  6. Brouwer, L. E. J. (1948). Consciousness, philosophy and mathematics. En H. Arendt (Ed.) (1975), Collected works of L. E. J. Brouwer I: Philosophy and foundations of mathematics (pp. 480-494). North-Holland.
  7. Brouwer, L. E. J. (1981). Brouwer’s Cambridge lectures on Intuitionism (editado por D. van Dalen). Cambridge University Press.
  8. Buroker, J. (2018). Port Royal Logic. En E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Winter 2018 ed.). https://plato.stanford.edu/archives/win2018/entries/port-royal-logic/
  9. Dummett, M. (2005). Elements of intuitionism (2a ed.). Clarendon Press.
  10. Finn, S. (2019). The adoption problem and anti-exceptionalism about logic. The Australasian Journal of Logic, 16(7), 231-249. https://doi.org/10.26686/ajl.v16i7.5916
  11. Hjortland, O. T. (2017). Anti-exceptionalism about logic. Philosophical Studies, 174(3), 631-658. https://doi.org/10.1007/s11098-016-0701-8
  12. Hjortland, O. T. (2019). What counts as evidence for a logical theory? The Australasian Journal of Logic, 16(7), 250-282. https://doi.org/10.26686/ajl.v16i7.5912
  13. Kripke, S. (1963a). Semantical considerations in modal logic. Acta Philosophica Fennica, 16, 83-94.
  14. Kripke, S. (1963b). Semantical analysis of modal logic I: Normal modal propositional calculi. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 9, 67-96.
  15. Kripke, S. (2021). The question of logic. Manuscrito aceptado en Mind para su publicación.
  16. Kneale, W. C., & Kneale, M. (1962). The development of logic. Oxford University Press.
  17. Kuhn, T. (1977). Objectivity, value, judgment and theory choice. En T. Kuhn, The essential tension: Selected studies in scientific tradition and change (pp. 320-339). The University of Chicago Press and London.
  18. Kuhn, T. (2002a). Conmensurabilidad, comparabilidad y comunicabilidad. En J. Conant & J. Haugeland (Eds.), El camino desde la estructura, (pp. 47-75). Paidós.
  19. Kuhn, T. (2002b). El camino desde la estructura. En J. Conant & J. Haugeland (Eds.), El camino desde la estructura (pp. 113-129). Paidós.
  20. Kuhn, T. (2002c). Epílogo. En J. Conant & J. Haugeland (Eds.), El camino desde la estructura (pp. 267-298). Paidós.
  21. Kuhn, T. (2002d). Mundos posibles en la historia de la ciencia. En J. Conant & J. Haugeland (Eds.), El camino desde la estructura (pp. 77-112). Paidós.
  22. Kuhn, T. (2002e). ¿Qué son las revoluciones científicas? En J. Conant & J. Haugeland (Eds.), El camino desde la estructura (pp. 23-45). Paidós.
  23. Kuhn, T. (2004). La estructura de las revoluciones científicas. Fondo de Cultura Económica.
  24. Martin, J. N. (2013). Distributive terms, truth, and the Port Royal Logic. History and Philosophy of Logic, 34(2), 133-154. https://doi.org/10.1080/01445340.2012.748331
  25. Padró, R. (2015). What the tortoise said to Kripke: The adoption problem and the epistemology of logic. CUNY Academic Works. https://academicworks.cuny.edu/gc_etds/603/
  26. Padró, R. (2021). The adoption problem and the epistemology of logic. Manuscrito aceptado en Mind para su publicación.
  27. Parsons, T. (2017). The traditional square of opposition. En E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Summer 2017 ed.). https://plato.stanford.edu/archives/sum2017/entries/square/
  28. Placek, T. (1999). Mathematical intuitionism and intersubjectivity: A critical exposition of arguments for intuitionism. Springer. https://www.springer.com/gp/book/9780792356301
  29. Posy, C. (2005). Intuitionism and philosophy. En Shapiro (Ed.), Oxford Handbook of Philosophy of Mathematics and Logic (pp. 319-355). Oxford University Press. https://doi.org/10.1093/0195148770.003.0009
  30. Priest, G. (2006). In contradiction: A study of the transconsistent. Oxford University Press.
  31. Putnam, H. (1969). Is logic empirical? En R. S. Cohen & M. W. Wartofsky (Eds), Boston Studies in the Philosophy of Science (vol, 5, pp. 216-241). Springer. https://doi.org/10.1007/978-94-010-3381-7_5
  32. Read, S. L. (2019). Anti-exceptionalism about logic. The Australasian Journal of Logic, 16(7), pp. 298-318. https://doi.org/10.26686/ajl.v16i7.5926
  33. Sankey, H. (1993). Kuhn’s changing concept of incommensurability. British Journal of Philosophy of Science, 44(4), 759-774. https://dx.doi.org/10.1093/bjps/44.4.759
  34. Sankey, H. (1998). Taxonomic incommensurability. International Studies in the Philosophy of Science, 12(1), 7-16. https://dx.doi.org/10.1080/02698599808573578
  35. Vilkko, R., & Hintikka, J. (2006). Existence and predication from Aristotle to Frege. Philosophy and Phenomenological Research, 73, 359-377. https://doi.org/10.1111/j.1933-1592.2006.tb00622.x