Vol. 44 Núm. 1 (2024)

Paraconsistencia, evidencia e incompletitud semántica

Edson Bezerra
Instituto de Investigaciones Filosóficas - Sociedad Argentina de Análisis Filosófico - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.

Publicado 2024-05-07

Palabras clave

  • Lógicas paraconsistentes,
  • Evidencia,
  • Interpretaciones filosóficas,
  • Filosofía de la lógica
  • Paraconsistent Logics,
  • Evidence,
  • Philosophical Interpretations,
  • Philosophy of Logic


En este artículo argumentamos que los sistemas Lógica Básica de la Evidencia (BLE) y Lógica de la Evidencia y Verdad (LETJ) sufren una especie de incompletud semántica con respecto a la noción informal de evidencia. Más específicamente, argumentamos que el conectivo o de la lógica LETJ no valida principios intuitivos sobre la evidencia concluyente.


  1. Almukdad, A., & Nelson, D. (1984). Constructible falsity and inexact predicates. The Journal of Symbolic Logic, 49(1), 231-233. https://doi.org/10.2307/2274105
  2. Antunes, H. (2018). On existence, inconsistency, and indispensability. Principia: An International Journal of Epistemology, 22(1), 7-34. https://doi.org/10.5007/1808-1711.2018v22n1p7
  3. Antunes, H. (2020). Enthymematic classical recapture. Logic Journal of the IGPL, 28(5), 817-831. https://doi.org/10.1093/jigpal/jzy061
  4. Antunes, H., Carnielli, W., Kapsner, A., & Rodrigues, A. (2020). Kripke-style models for logics of evidence and truth. Axioms, 9(3), 100. https://doi.org/10.3390/axioms9030100
  5. Arenhart, J. R. B. (2021). The evidence approach to paraconsistency versus the paraconsistent approach to evidence. Synthese, 198, 11537-11559. https://doi.org/10.1007/s11229-020-02813-x
  6. Arenhart, J. R. B. (2022). Interpreting philosophical interpretations of paraconsistency. Synthese, 200(6), 449. https://doi.org/10.1007/s11229-022-03941-2
  7. Arenhart, J., & Melo, E. S. (2022). The liar paradox: Between evidence and truth. Logic and Logical Philosophy, 31(2), 289-311. https://doi.org/10.12775/LLP.2022.005
  8. Asenjo, F. G. (1966). A calculus of antinomies. Notre Dame Journal of Formal Logic, 7(1), 103-105.
  9. Barrio, E. (2018). Models & proofs: LFIs without a canonical interpretations. Principia: An International Journal of Epistemology, 22(1), 87-112. https://doi.org/10.5007/1808-1711.2018v22n1p87
  10. Barrio, E., & Da Ré, B. (2018). Paraconsistency and its philosophical interpretations. Australasian Journal of Logic, 15(2), 151-170. https://doi.org/10.26686/ajl.v15i2.4860
  11. Barrio, E. A., Pailos, F. M., & Szmuc, D. E. (2017). A paraconsistent route to semantic closure. Logic Journal of the IGPL, 25(4), 387-407. https://doi.org/10.1093/jigpal/jzx009
  12. Belnap, N. D. (1977). A useful four-valued logic. In J. M. Dunn & G. Epstein (Eds.), Modern uses of multiple-valued logic, (pp. 5-37). Springer. https://doi.org/10.1007/978-94-010-1161-7_2
  13. Bezerra, E., & Venturi, G. (2021). Squeezing arguments and the plurality of informal notions. FLAP, 8(7), 1899-1916.
  14. Blasio, C. (2017). Revisitando a lógica de Dunn-Belnap. Manuscrito, 40(2), 99-126. https://periodicos.sbu.unicamp.br/ojs/index.php/manuscrito/article/view/8649854
  15. Caret, C. R. (2017). The collapse of logical pluralism has been greatly exaggerated. Erkenntnis, 82(4), 739-760. https://doi.org/10.1007/s10670-016-9841-7
  16. Carnielli, W. A. (1990). Many-valued logics and plausible reasoning. Proceedings of the Twentieth International Symposium on Multiple-Valued Logic (pp. 328-329). IEEE Computer Society. https://doi.org/10.1109/ISMVL.1990.122642.
  17. Carnielli, W., Coniglio, M. E., & Marcos, J. (2007). Logics of formal inconsistency. In D. Gabbay & F. Guenthner (Eds), Handbook of philosophical logic (pp. 1-93). Springer. https://doi.org/10.1007/978-1-4020-6324-4_1
  18. Carnielli, W., Coniglio, M. E., & Rodrigues, A. (2020). Recovery operators, paraconsistency and duality. Logic Journal of the IGPL, 28(5), 624-656.
  19. Carnielli, W., Marcos, J., & de Amo, S. (2004). Formal inconsistency and evolutionary databases. Logic and Logical Philosophy, 8(8), 115-152. https://doi.org/10.12775/LLP.2000.008
  20. Carnielli, W. & Rodrigues, A. (2015). Towards a philosophical understanding of the logics of formal inconsistency. Manuscrito, 38(2), 155-184. https://doi.org/10.1590/0100-6045.2015.V38N2.WCeAR
  21. Carnielli, W. & Rodrigues, A. (2019a). An epistemic approach to paraconsistency: A logic of evidence and truth. Synthese, 196(9), 3789-3813. http://www.jstor.org/stable/45215327
  22. Carnielli, W. & Rodrigues, A. (2019b). Inferential semantics, paraconsistency, and preservation of evidence. In C. Başkent & T. Ferguson (Eds), Graham Priest on dialetheism and paraconsistency (pp. 165-187). Springer. https://doi.org/10.1007/978-3-030-25365-3_9
  23. Carnielli, W. & Rodrigues, A. (2019c). On epistemic and ontological interpretations of intuitionistic and paraconsistent paradigms. Logic Journal of the IGPL, 29(4), 569-584. https://doi.org/10.1093/jigpal/jzz041
  24. Da Costa, N. C. (1974). On the theory of inconsistent formal systems. Notre Dame Journal of Formal Logic, 15(4), 497-510. https://doi.org/10.1305/ndjfl/1093891487
  25. Da Costa, N. C. (1980). Ensaio sobre os fundamentos da lógica. Hucitec.
  26. Da Costa, N. C. (1982). The philosophical import of paraconsistent logic. The Journal of Non-Classical Logic, 1(1), 1-19.
  27. Da Costa, N. C., Krause, D., & Bueno, O. (2007). Paraconsistent logics and paraconsistency. In D. Jacquette (Ed.), Philosophy of logic (pp. 791-911). North-Holland. https://doi.org/10.1016/B978-044451541-4/50023-3.
  28. Da Costa, N. C., & Marconi, D. (1989). An overview of paraconsistent logic in the 80s. Journal of Non-classical Logic, 6(1), 5-32.
  29. D’Agostino, M. (2015). An informational view of classical logic. Theoretical Computer Science, 606, 79-97. https://doi.org/10.1016/j.tcs.2015.06.057
  30. D’Ottaviano, I. M., & da Costa, N. C. (1970). Sur un probleme de Jaskowski. Comptes Rendus de l’Académie des Sciences de Paris, 270, 1349-1353.
  31. Dunn, J. M. (2008). Information in computer science. In P. Adriaans & J. van Benthem (Eds.), Philosophy of information (pp. 581-608). North Holland. https://doi.org/10.1016/B978-0-444-51726-5.50019-4.
  32. Ferguson, T. M. (2018). Axiom (cc)0 and verifiability in two extracanonical logics of formal inconsistency. Principia: An International Journal of Epistemology, 22(1), 113-138. https://doi.org/10.5007/1808-1711.2018v22n1p113
  33. Fitting, M. (2017). Paraconsistent logic, evidence, and justification. Studia Logica, 105(6), 1149-1166. https://doi.org/10.1007/s11225-017-9714-3
  34. Lewis, D. (1982). Logic for equivocators. Noûs, 16(3), 431-441.
  35. Lo Guercio, N. & Szmuc, D. (2018). Remarks on the epistemic interpretation of paraconsistent logic. Principia: An International Journal of Epistemology, 22(1), 153-170. https://doi.org/10.5007/1808-1711.2018v22n1p153
  36. Marcos, J. (2005). Logics of formal inconsistency. Fundação Biblioteca Nacional.
  37. Priest, G. (1979). The logic of paradox. Journal of Philosophical Logic, 8(1), 219-241. https://doi.org/10.1007/BF00258428
  38. Priest, G. (2006). In Contradiction. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199263301.001.0001
  39. Priest, G., Berto, F., & Weber, Z. (2022). Dialetheism. In E. N. Zalta & U. Nodelman (Eds.),The Stanford Encyclopedia of Philosophy (Fall 2022 ed.). Stanford University. https://plato.stanford.edu/archives/fall2022/entries/dialetheism/
  40. Rescher, N. (1969). Many-valued logic. McGraw Hill.
  41. Rodrigues, A., Bueno-Soler, J., & Carnielli, W. (2021). Measuring evidence: A probabilistic approach to an extension of Belnap-Dunn logic. Synthese, 198(Suppl 22), 5451-5480. https://doi.org/10.1007/s11229-020-02571-w
  42. Rodrigues, A. & Carnielli, W. (2022). On Barrio, Lo Guercio, and Szmuc on logics of evidence and truth. Logic and Logical Philosophy, 31(2), 313-338. https://doi.org/10.12775/LLP.2022.009
  43. Sette, A. M. (1973). On the propositional calculus P1. Mathematica Japonicae,18, 173-180.
  44. Shapiro, S. (2005). Logical consequence, proof theory, and model theory. In The Oxford Handbook of Philosophy of Mathematics and Logic (pp. 651-670). Oxford University Press.
  45. Sundholm, G. (1983). Systems of deduction. In D. Gabbay & F. Guenthner (Eds), Handbook of philosophical logic (pp. 133-188). Springer. https://doi.org/10.1007/978-94-009-7066-3_2
  46. Wansing, H. (2022). One heresy and one orthodoxy: On dialetheism, dimathematism, and the non-normativity of logic. Erkenntnis, 1-25. https://doi.org/10.1007/s10670-022-00528-8