Forthcoming
Thematic section

Two Quantum-Mechanical Arguments against the Metaphysical Equivalence between Substratum and Bundle Theories of Individuality

Raoni Arroyo
Graduate Program in Philosophy, Federal University of Santa Catarina, Florianopolis, Brazil.
Jonas R. Becker Arenhart
Department of Philosophy, Federal University of Santa Catarina, Florianopolis, Brazil / Graduate Program in Philosophy, Federal University of Maranhão, São Luís, Brazil.

Published 2026-01-06

Keywords

  • Metaphysical Equivalence,
  • Metametaphysics,
  • Metaphysics of Quantum Mechanics,
  • Substratum and Bundle Theories of Individuality,
  • Metaphysical Underdetermination
  • Equivalencia metafísica,
  • Metametafísica,
  • Metafísica de la mecánica cuántica,
  • Teorías de substrato y de haces sobre la individualidad,
  • Indeterminación metafísica

Abstract

It is a widespread consensus among metaphysicians that the bundle and substratum theories are substantially different metaphysical theories of individuality. In a realist stance towards metaphysics, they cannot both track the truth when describing fundamental reality, thus they’re rival metaphysical theories. Against that consensus, Jiri Benovsky has advanced a metametaphysical thesis that they are in fact metaphysically equivalent. This paper challenges Benovsky’s equivalence thesis with two counter-arguments based on the metaphysics of quantum mechanics: quantum metaphysical indeterminacy and wavefunction realism. As we shall argue, while both substratum and bundle theories arguably fail in standard quantum mechanics, they fail in different ways. Hence, given Benovsky’s own notion of metaphysical equivalence, they are not equivalent.

References

  1. Albert, D. Z. (1992). Quantum mechanics and experience. Harvard University Press.
  2. Albert, D. Z. (1996). Elementary Quantum Metaphysics. In J. T. Cushing, A. Fine, S. Goldstein (Eds.), Bohmian mechanics and quantum theory: An appraisal. Boston Studies in the Philosophy of Science, vol 184. Springer. https://doi.org/10.1007/978-94-015-8715-0_19
  3. Albert, D. Z. (2013). Wave function realism. In A. Ney & D. Z. Albert (Eds.), The wave function: Essays on the metaphysics of quantum mechanics (pp. 52–57). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199790807.003.0001
  4. Albert, D. Z. (2023). A guess at the riddle: Essays on the physical underpinnings of quantum mechanics. Harvard University Press.
  5. Arenhart, J. R. B. (2012). Ontological frameworks for scientific theories. Foundations of Science, 17, 339-356. https://doi.org/10.1007/s10699-012-9288-5
  6. Arenhart, J. R. B. (2017). The received view on quantum non-individuality: Formal and metaphysical analysis. Synthese, 194, 1323–1347. https://doi.org/10.1007/s11229-015-0997-5
  7. Arenhart, J. R. B. (2023). Non-reflexive logics and their metaphysics: A critical appraisal. In C. Soto (Ed.), Current debates in philosophy of science: In honor of Roberto Torretti (pp. 367–389). Springer. https://doi.org/10.1007/978-3-031-32375-1_14
  8. Arenhart, J. R. B., & Arroyo, R. (2021a). On physics, metaphysics and metametaphysics. Metaphilosophy, 52(2), 172–195. https://doi.org/10.1111/meta.12486
  9. Arenhart, J. R. B., & Arroyo, R. (2021b). Back to the question of ontology (and metaphysics). Manuscrito, 44, 1-51. https://doi.org/10.1590/0100-6045.2021.V44N2.JR
  10. Arenhart, J. R. B., & Arroyo, R. (2021c). The spectrum of metametaphysics: Mapping the state of art in scientific metaphysics. Veritas 66(1), e41217. https://doi.org/10.15448/1984-6746.2021.1.41217
  11. Arenhart, J. R. B., & Felippe Jr., H. (2020). The fate of bundle and substratum theories under KS theorem. In J. A. de Barros & D. Krause (Eds.), A true polymath: A tribute to Francisco Antonio Doria (Vol. 1, pp. 1-22). College Publications.
  12. Arroyo, R. (2022). The Kochen–Specker theorem and ontological (in)completeness of quantum objects. CLE e-prints, 20(1). https://www.cle.unicamp.br/eprints/index.php/CLE_e-Prints/article/view/1583
  13. Arroyo, R., & Arenhart, J. R. B. (2022a). The epistemic value of metaphysics. Synthese, 200(337), 1-22. https://doi.org/10.1007/s11229-022-03833-5
  14. Arroyo, R., & Arenhart, J. R. B. (2022b). A (meta)metafísica da ciência: O caso da mecânica quântica não relativista. Kriterion, 63(152). https://doi.org/10.1590/0100-512X2022n15201rwa
  15. Arroyo, R., & Arenhart, J. R. B. (2024). Quantum ontology de-naturalized: What we can’t learn from quantum mechanics. THEORIA. An International Journal for Theory, History and Foundations of Science, 39(2), 193-218. https://doi.org/10.1387/theoria.24955
  16. Benovsky, J. (2008). The bundle theory and the substratum theory: Deadly enemies or twin brothers? Philosophical Studies, 141, 175-190. https://doi.org/10.1007/s11098-007-9158-0
  17. Benovsky, J. (2016). Meta-metaphysics: On metaphysical equivalence, primitiveness, and theory choice. Springer. https://doi.org/10.1007/978-3-319-25334-3
  18. Black, M. (1952). The identity of indiscernibles. Mind, 61(242), 153-164. https://doi.org/10.1093/mind/lxi.242.153
  19. Brading, K., & Skiles, A. (2012). Underdetermination as a path to structural realism. In E. Landry & D. Rickles (Eds.), Structural realism: Structure, object, and causality (pp. 99-115). Springer. https://doi.org/10.1007/978-94-007-2579-9_5
  20. Calosi, C., & Mariani, C. (2021). Quantum indeterminacy. Philosophy Compass, 16(4), e12731. https://doi.org/10.1111/phc3.12731
  21. Calosi, C., & Wilson, J. (2019). Quantum metaphysical indeterminacy. Philosophical Studies, 176, 2599-2627. https://doi.org/10.1007/s11098-018-1143-2
  22. Calosi, C., & Wilson, J. (2022). Metaphysical indeterminacy in the multiverse. In V. Allori (Ed.) Quantum mechanics and fundamentality: Naturalizing quantum theory between scientific realism and ontological indeterminacy (pp. 375-395). https://doi.org/10.1007/978-3-030-99642-0_25
  23. Chen, E. (2022). Fundamental nomic vagueness. Philosophical Review, 131(1), 1-49. https://doi.org/10.1215/00318108-9415127
  24. Conroy, C. (2015). Branch-relative identity. In A. Guay & T. Pradeu (Eds.), Individuals across the sciences (pp. 250-270). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199382514.003.0014
  25. Darby, G. (2009). Quantum mechanics and metaphysical indeterminacy. Australasian Journal of Philosophy, 88(2), 227-245. https://doi.org/10.1080/00048400903097786
  26. Demirli, S. (2010). Indiscernibility and bundles in a structure. Philosophical Studies, 151, 1-18. https://doi.org/10.1007/s11098-009-9420-8
  27. Fletcher, S. C., & Taylor, D. E. (2021). Quantum indeterminacy and the eigenstate-eigenvalue link. Synthese, 199. https://doi.org/10.1007/s11229-021-03285-3
  28. French, S. (2013). Whither wave function realism? In A. Ney & D. Z. Albert (Eds), The wave function: Essays on the metaphysics of quantum mechanics (pp. 76-90). Oxford Academic. https://doi.org/10.1093/acprof:oso/9780199790807.003.0003
  29. French, S. (2018). Realism and metaphysics. In J. Saatsi (Ed.), The Routledge handbook of scientific realism (pp. 394–406). Routledge.
  30. French, S., & Bigaj, T. (2024). Identity and individuality in quantum theory. In E. N. Zalta & U. Nodelman (Eds.), The Stanford Encyclopedia of Philosophy (Spring 2024 Edition). https://plato.stanford.edu/archives/spr2024/entries/qt-idind/
  31. French, S., & Krause, D. (2006). Identity in physics: A historical, philosophical, and formal analysis. Oxford University Press. https://doi.org/10.1093/0199278245.001.0001
  32. Gilton, M. J. R. (2016). Whence the eigenstate–eigenvalue link? Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 55, 92-100. https://doi.org/10.1016/j.shpsb.2016.08.005
  33. Glick, D. (2017). Against quantum indeterminacy. Thought: A Journal of Philosophy, 6(3), 204-213. https://doi.org/10.1002/tht3.250
  34. Huggett, N., & Norton, J. (2014). Weak discernibility for quanta, the right way. British Journal for the Philosophy of Science, 65, 39-48. https://doi.org/10.1093/bjps/axs038
  35. Humphreys, P. (2013). Scientific ontology and speculative ontology. In D. Ross, J. Ladyman & H. Kincaid (Eds.), Scientific metaphysics (pp. 51–78). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199696499.003.0003
  36. Krause, D., & Arenhart, J. R. B. (2018). Quantum non-individuality: Background concepts and possibilities. In S. Wuppuluri & F. A. Doria (Eds.), The map and the territory: Exploring the foundations of science, thought and reality (pp. 281-305). Springer. https://doi.org/10.1007/978-3-319-72478-2_15
  37. Lewis, P. J. (2016). Quantum ontology: A guide to the metaphysics of quantum mechanics. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780190469825.001.0001
  38. Lowe, E. J. (2003). Individuation. In M. J. Loux & D. W. Zimmerman (Eds.), The Oxford handbook of metaphysics (pp. 75–95). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199284221.003.0004
  39. Lowe, E. J. (2015). Non-individuals. In A. Guay & T. Pradeu (Eds.), Individuals across the sciences (pp. 49–60). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199382514.003.0004
  40. McKenzie, K. (2020). A curse on both houses: Naturalistic versus a priori metaphysics and the problem of progress. Res Philosophica, 97(1), 1–29. https://doi.org/10.11612/resphil.1868
  41. Mittelstaedt, P. (1994). The constitution of objects in Kant’s philosophy and in modern physics. In P. Parrini (Ed.), Kant and contemporary epistemology. Springer. https://doi.org/10.1007/978-94-011-0834-8_7
  42. Morganti, M. (2015). The metaphysics of individuality and the sciences. In T. Pradeu & A. Guay (Eds.) Individuals across the sciences, (pp. 273-294). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199382514.003.0015
  43. Morganti, M., & Tahko, T. (2017). Moderately naturalistic metaphysics. Synthese, 194(7), 2557-2580. https://doi.org/10.1007/s11229-016-1068-2
  44. Muller, F. A., & Saunders, S. (2008). Discerning fermions. The British Journal for the Philosophy of Science, 59(3) 499-548. https://doi.org/10.1093/bjps/axn027
  45. Ney, A. (2012). Neo-positivist metaphysics. Philosophical Studies, 160, 53–78. https://doi.org/10.1007/s11098-012-9912-9
  46. Ney, A. (2021). The world in the wave function: A metaphysics for quantum physics. Oxford University Press. https://doi.org/10.1093/oso/9780190097714.001.0001
  47. Oldofredi, A. (2024). Unexpected quantum indeterminacy. European Journal for the Philosophy of Science, 14(15). https://doi.org/10.1007/s13194-024-00574-9
  48. Pylkkänen, P., Hiley, B. J., & Pättiniemi, I. (2015). Bohm’s approach and individuality. In A. Guay & T. Pradeu (Eds.), Individuals across the sciences (pp. 226-249). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199382514.003.0013
  49. Retler, B., & Bailey, A. M. (2024) Object. In. E. Zalta and U. Nodelman (eds.) The Stanford Encyclopedia of Philosophy (Summer 2024 Edition). https://plato.stanford.edu/archives/sum2024/entries/object/
  50. Rodriguez-Pereyra, G. (2004). The bundle theory is compatible with distinct but indiscernible particulars. Analysis, 64(1), 72–81. https://doi.org/10.1093/analys/64.1.72
  51. Saunders, S. (2003). Physics and Leibniz’s principles. In K. Brading & E. Castellani (Eds.), Symmetries in physics: Philosophical reflections (pp. 289-307). Cambridge University Press.
  52. Skow, B. (2010). Deep metaphysical indeterminacy. The Philosophical Quarterly, 60(241), 851-858. https://doi.org/10.1111/j.1467-9213.2010.672.x
  53. Wilson, A. (2020). The nature of contingency: Quantum physics as modal realism. Oxford University Press. https://doi.org/10.1093/oso/9780198846215.001.0001
  54. Wolff, J. (2015). Spin as a determinable. Topoi, 34, 379-386. https://doi.org/10.1007/s11245-015-9319-2