Vol. 42 No. 2 (2022)
Articles

A Geometric Fallacy

José Seoane
Universidad de la República, Montevideo, Uruguay / Sistema Nacional de Investigadores

Published 2022-11-11

Keywords

  • Expressive Heterogeneity,
  • Inferential Heterogeneity,
  • Diagrams,
  • Fallacies,
  • Euclid
  • Heterogeneidad expresiva,
  • Heterogeneidad inferencial,
  • Diagramas,
  • Falacias,
  • Euclides

Abstract

The sentence “all triangles are isosceles” is obviously false; however, a supposed “demonstration” of such an assertion has become very popular. Apparently, the authorship of this argument is due to Rouse Ball (Rouse Ball, 1905, pp. 38-39). Various authors have described it as a “fallacy” or “sophistry”. For example, Rouse Ball (1905, p. 38), E. A. Maxwell (1963, p. 13), Ya. S. Dubnov (2006, p. 2), Jesse Norman (2006, p. 2), Marvin J. Greenberg (2008, p. 25), K. Manders (2008, p. 94). Hamblin teaches that a fallacy, from the point of view of a long tradition dating back to Aristotle, is an argument that is not valid, but it seems so (Hamblin 1970, p. 12). So, if you want to claim that a given argument is a fallacy, two questions are essential: why is the argument wrong? Why does it look like it is correct? The objective is, answering both questions, to enrich the understanding of this case and, in general, some aspects of heterogeneous geometric proof.

References

  1. Dubnov, Ya. S. (2006). Mistakes in geometric proofs (trad. A. Henn & O. Titelbaum). En A. I. Fetisov & Ya. S. Dubnov (2006), Proof in geometry (with mistakes in geometric proofs) (pp. 1-57). Dover Publications.
  2. Ferreirós, J. (2016). Mathematical knowledge and the interplay of practices. Princeton University Press.
  3. Greenberg, M. J. (2008). Euclidean and non-euclidean geometries (4th ed.). W. H. Freeman and Company.
  4. Hamblin, C. (1970). Fallacies. Methuen.
  5. Hansen, H. V. (2002). The straw thing of fallacy theory: The standard definition of ‘fallacy’, Argumentation, 16, 133-155. https://doi.org/10.1023/A:1015509401631
  6. Klein, F. (2016). Elementary mathematics from a higher standpoint. Volume II: Geometry (trad. G. Schubring). Springer. https://doi.org/10.1007/978-3-662-49445-5
  7. Manders, K. (1996). Diagram contents and representational granularity. En J. Seligman & D. Westerståhl (Eds.), Logic, language and computation, Vol. I (pp. 389-404). CSLI Publications.
  8. Manders, K. (2008). The Euclidian diagram (1995). En P. Mancosu (Ed.), The philosophy of mathematical practice (pp. 80-133). Oxford University Press.
  9. Maxwell, E. A. (1963). Fallacies in mathematics. Cambridge University Press.
  10. Netz, R. (1999). The shaping of deduction in Greek mathematics. Cambridge University Press.
  11. Norman, J. (2006). After Euclid. CSLI Publications.
  12. Nelson, L. (2016). A theory of philosophical fallacies. Springer.
  13. Peláez, A. (comp.). Diagramas: Fundamentos y aplicaciones. Manuscrito.
  14. Rouse Ball, W. W. (1905). Mathematical recreations and essays. Macmillan.
  15. Seoane, J. (2021). Heterogeneidad euclidiana. O que nos faz pensar, (29)49, 78-99.
  16. Tindale, C. M. (2007). Fallacies and argument appraisal. Cambridge University Press.
  17. Vega Reñón, L. (2013). La fauna de las falacias. Trotta.
  18. Walton, D. (2010). Why fallacies appear to be better arguments than they are. Informal Logic, 30(2), 159-184. https://ssrn.com/abstract=1759289