Publicado 2023-05-01
Palabras clave
- TeorÃas matemáticas,
- Construcción de teorÃas,
- Método axiomático,
- DesafÃo semántico,
- DesafÃo del valor
- Mathematical Theories,
- Theory Formation,
- Axiomatic Method,
- Semantic Challenge,
- Value Challenge
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Resumen
Dentro de la filosofía de la práctica matemática, la cuestión de la pureza del método ha ido ganando un lugar en las agendas de investigación y publicaciones. Usualmente se asume que “pura” es un predicado de soluciones o demostraciones, el cual resulta satisfecho cuando estas son intrínsecas a los problemas o teoremas. En este artículo motivo la adopción de una concepción más hospitalaria, de acuerdo con la cual la pureza del método emerge con naturalidad en la práctica de construir teorías matemáticas autónomas, y muestro cómo a partir de esta la concepción usual se ve enriquecida.
Citas
- Abrusci, V. M. (1981). ‘Proof’, ‘theory’, and ‘foundations’ in Hilbert’s mathematical work from 1885 to 1900. En M. L. Dalla Chiara (Ed.), Italian studies in the philosophy of science (pp. 453-491). Springer.
- Arana, A. (2008). Logical and semantic purity. Protosociology, 25, 36-48. https://doi.org/10.5840/protosociology2008253
- Arana, A. (2014). Purity in arithmetic: Some formal and informal issues. En G. Link (Ed.), Formalism and beyond. On the nature of mathematical discourse (pp. 315-335). Walter de Gruyter. https://doi.org/10.1515/9781614518471.315
- Arana, A. (2017). On the alleged simplicity of impure proof. En R. Kossak & P. Ording (Eds.), Simplicity: Ideals of practice in mathematics and the arts (pp. 205-226). Springer.
- Arana, A., & Mancosu, P. (2012). On the relationship between plane and solid geometry. The Review of Symbolic Logic, 5(2), 294-353. https://doi.org/10.1017/S1755020312000020
- Aristóteles (1995). Tratados de lógica (Órganon) II (M. Candel Sanmartín, introducciones, traducciones y notas, Biblioteca Clásica Gredos, 115). Gredos.
- Awodey, S., & Reck, E. H. (2002). Completeness and categoricity. Part I: Nineteenth-century axiomatics to twentieth-century metalogic. History and Philosophy of Logic, 23(1), 1-30.
- Baldwin, J. T. (2013). Formalization, primitive concepts, and purity. The Review of Symbolic Logic, 6(1), 87-128. https://doi.org/10.1017/S1755020312000263
- Bennett, M. K. (2011). Affine and projective geometry. John Wiley & Sons.
- Cellucci, C. (2017). Rethinking knowledge: The heuristic view (vol. 4). Springer.
- Corry, L. (2003). Modern algebra and the rise of mathematical structures. Springer Science & Business Media.
- Corry, L. (2006). Axiomatics, empiricism, and anshauung in Hilbert's conception of geometry: Between arithmetic and general relativity. En J. Ferreirós & J. Gray (Eds.), The architecture of modern mathematics (pp. 133-156). Oxford University Press.
- Courant, R. & Robbins, H. (2002). ¿Qué son las matemáticas? Conceptos y métodos fundamentales. Fondo de Cultura Económica.
- Dawson, J. W. (2015). Why prove it again? Alternative proofs in mathematical practice. Birkhäuser.
- Detlefsen, M. (2008). Purity as an ideal of proof. En P. Mancosu (Ed.), The philosophy of mathematical practice (pp. 179-197). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199296453.003.0008
- Detlefsen, M. & Arana, A. (2011). Purity of methods. Philosophers’ Imprint, 11(2), 1-20.
- Enriques, F. (1898). Lezioni di geometria proiettiva. Nicola Zanichelli.
- Ferraro, G., & Panza, M. (2012). Lagrange’s theory of analytical functions and his ideal of purity of method. Archive for History of Exact Sciences, 66(2), 95-197.
- Ferreirós, J. (2015). Mathematical knowledge and the interplay of practices. Princeton University Press.
- Ferreirós, J. (2016). Sobre la certeza de la aritmética. En J. Ferreirós & A. Lassalle Casanave (Eds.), El árbol de los números (pp. 193-118). Editorial Universidad de Sevilla.
- Giovannini, E. N. (2015). David Hilbert y los fundamentos de la geometría: 1981 - 1905. College Publications.
- Giovannini, E. N. (2016). Bridging the gap between analytic and synthetic geometry: Hilbert’s axiomatic approach. Synthese, 193(1), 31-70. https://doi.org/10.1007/s11229-015-0743-z
- Giovannini, E. N., Lassalle Casanave, A., & Veloso, P. A. (2017). De la práctica euclidiana a la práctica hilbertiana: Las teorías del área plana. Revista Portuguesa de Filosofía, 73(3/4), 1263-1294.
- Hallett, M. (2008). Reflections on the purity of method in Hilbert’s Grundlagen der Geometrie. En P. Mancosu (Ed.), The philosophy of mathematical practice (pp. 198-255). Oxford University Press.
- Hartshorne, R. (1967). Foundations of projective geometry. W. A. Benjamin.
- Heiberg, J. L. (1884). Euclidis opera omnia (vol. 1307). BG Teubneri.
- Hilbert, D. (1891/2004). Projektive geometrie. En M. Hallett & U. Majer (Eds.), David Hilbert’s lectures on the foundations of geometry 1891–1902 (vol. I, pp. 21-55). Springer Science & Business Media.
- Hilbert, D. (1894). Zwei neue beweise für die zerlegbarkeit der zahlen eines körpers in primideale. Jahresbericht der Deutschen Mathematiker-Vereinigung, 3, 59-59.
- Hilbert, D. (1896). Ein neuer beweis des kronecker´schen fundamentalsatzes über abelsche zahlkörper. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1896, 29-39.
- Hilbert, D. (1899a/2004). Elemente der euklidischen geometrie. En M. Hallett & U. Majer (Eds.), David Hilbert’s lectures on the foundations of geometry 1891–1902 (vol. I, pp. 302-394). Springer Science & Business Media.
- Hilbert, D. (1899b/2004). Grundlagen der euklidischen geometrie. En M. Hallett & U. Majer (Eds.), David Hilbert’s lectures on the foundations of geometry 1891–1902 (vol. I, pp. 221-286). Springer Science & Business Media, 2004.
- Hilbert, D. (1902a). Mathematical problems. Bulletin of the American Mathematical Society, 8(10), 437-479.
- Hilbert, D. (1902b/2004). Grundlagen der geometrie. En M. Hallett & U. Majer (Eds.), David Hilbert’s lectures on the foundations of geometry 1891–1902 (vol. I, pp. 540-602). Springer Science & Business Media.
- Hilbert, D. (1971). Foundations of geometry (L. Unger, Trad.). Open Court.
- Hilbert, D. (1996). El pensamiento axiomático. En C. Álvarez y F. Segura (Eds.), Fundamentos de las matemáticas (pp. 23-35). UNAM.
- Hilbert, D. (1998). The theory of algebraic number fields. Springer Science & Business Media.
- Kahle, R., & Pulcini, G. (2018). Towards an operational view of purity. En P. Arazim & Tomáš Lávička (Eds.), The Logica Yearbook 2017 (pp. 125-138). College Publications.
- Klein, F. (1979). Development of mathematics in the 19th Century: Appendices, “Kleinian mathematics from an advanced standpoint” (vol. 9). Math Science Press.
- Kreisel, G. (1980). Kurt Gödel, 28 April 1906 - 14 January 1978. Biographical Memoirs of Fellows of the Royal Society, 26, 148-224.
- Lassalle Casanave, A. & Giovannini, E. N. (2021), From magnitudes to geometry and back: De Zolt’s postulate. Theoria, 88(3), 629-652. https://doi.org/10.1111/theo.12385
- Lehet, E. (2021). Impurity in contemporary mathematics. Notre Dame Journal of Formal Logic, 62(1), 67-82. https://doi.org/10.1215/00294527-2021-0003
- Mancosu, P., & Arana, A. (2015). Plane and solid geometry: A note on purity of methods. En G. Lolli, M. Panza & G. Venturi (Eds.), From logic to practice (pp. 23-31). Springer.
- Pambuccian, V. (2001). Fragments of euclidean and hyperbolic geometry. Scientiae Mathematicae Japonicae, 53(2), 361-400.
- Pasch, M. (2013). Vorlesungen über die neuere geometrie: Mit einem anhang von Max Dehn: Die grundlegung der geometrie in historischer entwicklung (vol. 23). Springer.
- Pillay, A. (2021). Remarks on purity of methods. Notre Dame Journal of Formal Logic, 62(1), 193-200. https://doi.org/10.1215/00294527-2021-0008
- Prawitz, D. (1971). Ideas and results in proof theory. En J. E. Fenstad (Ed.), Studies in logic and the foundations of mathematics (vol. 63, pp. 235-307). Elsevier. https://doi.org/10.1016/S0049-237X(08)70849-8
- Rav, Y. (1999). Why do we prove theorems? Philosophia Mathematica, 7(1), 5-41. https://doi.org/10.1093/philmat/7.1.5
- Schlimm, D. (2013). Axioms in mathematical practice. Philosophia Mathematica, 21(1), 37-92. https://doi.org/10.1093/philmat/nks036
- Schur, F. (1898). Über den fundamentalsatz der projectiven geometrie. Mathematische Annalen, 51(3), 401-409.
- Sieg, W. (2009). Hilbert’s proof theory. En D. Gabbay & J. Woods (Eds.), Handbook of the history of logic: Volume 5. Logic from Russell to Church (pp. 321-384). Elsevier.
- Troelstra, A. (1975). Non-extensional equality. Fundamenta Mathematicae, 82(4), 307- 322. http://eudml.org/doc/214670
- Wiener, H. (1890). Ueber grundlagen und aufbau der geometrie. Jahresbericht der Deutschen Mathematiker-Vereinigung, 1, 45-48.